In game theory and economic theory, a **zero-sum game** is a mathematical representation of a situation in which each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a larger piece reduces the amount of cake available for others as much as it increases the amount available for that taker, is a zero-sum game if all participants value each unit of cake equally (see marginal utility).

- Definition
- Solution
- Example
- Solving
- Universal solution
- Complexity
- Extensions
- Misunderstandings
- Zero-sum thinking
- See also
- References
- Further reading
- External links

In contrast, **non-zero-sum** describes a situation in which the interacting parties' aggregate gains and losses can be less than or more than zero. A zero-sum game is also called a *strictly competitive* game while non-zero-sum games can be either competitive or non-competitive. Zero-sum games are most often solved with the minimax theorem which is closely related to linear programming duality,^{ [1] } or with Nash equilibrium.

Humans have a cognitive bias towards seeing situations as zero-sum, known as zero-sum bias.

Choice 1 | Choice 2 | |

Choice 1 | −A, A | B, −B |

Choice 2 | C, −C | −D, D |

Generic zero-sum game |

The zero-sum property (if one gains, another loses) means that any result of a zero-sum situation is Pareto optimal. Generally, any game where all strategies are Pareto optimal is called a conflict game.^{ [2] }

Zero-sum games are a specific example of constant sum games where the sum of each outcome is always zero. Such games are distributive, not integrative; the pie cannot be enlarged by good negotiation.

Situations where participants can all gain or suffer together are referred to as non-zero-sum. Thus, a country with an excess of bananas trading with another country for their excess of apples, where both benefit from the transaction, is in a non-zero-sum situation. Other non-zero-sum games are games in which the sum of gains and losses by the players are sometimes more or less than what they began with.

The idea of Pareto optimal payoff in a zero-sum game gives rise to a generalized relative selfish rationality standard, the punishing-the-opponent standard, where both players always seek to minimize the opponent's payoff at a favorable cost to himself rather to prefer more than less. The punishing-the-opponent standard can be used in both zero-sum games (e.g. warfare game, chess) and non-zero-sum games (e.g. pooling selection games).^{ [3] }

For two-player finite zero-sum games, the different game theoretic solution concepts of Nash equilibrium, minimax, and maximin all give the same solution. If the players are allowed to play a mixed strategy, the game always has an equilibrium.

Blue Red | A | B | C |
---|---|---|---|

1 | −30 30 | 10 −10 | −20 20 |

2 | 10 −10 | −20 20 | 20 −20 |

A game's payoff matrix is a convenient representation. Consider for example the two-player zero-sum game pictured at right or above.

The order of play proceeds as follows: The first player (red) chooses in secret one of the two actions 1 or 2; the second player (blue), unaware of the first player's choice, chooses in secret one of the three actions A, B or C. Then, the choices are revealed and each player's points total is affected according to the payoff for those choices.

*Example: Red chooses action 2 and Blue chooses action B. When the payoff is allocated, Red gains 20 points and Blue loses 20 points.*

In this example game, both players know the payoff matrix and attempt to maximize the number of their points. Red could reason as follows: "With action 2, I could lose up to 20 points and can win only 20, and with action 1 I can lose only 10 but can win up to 30, so action 1 looks a lot better." With similar reasoning, Blue would choose action C. If both players take these actions, Red will win 20 points. If Blue anticipates Red's reasoning and choice of action 1, Blue may choose action B, so as to win 10 points. If Red, in turn, anticipates this trick and goes for action 2, this wins Red 20 points.

Émile Borel and John von Neumann had the fundamental insight that probability provides a way out of this conundrum. Instead of deciding on a definite action to take, the two players assign probabilities to their respective actions, and then use a random device which, according to these probabilities, chooses an action for them. Each player computes the probabilities so as to minimize the maximum expected point-loss independent of the opponent's strategy. This leads to a linear programming problem with the optimal strategies for each player. This minimax method can compute probably optimal strategies for all two-player zero-sum games.

For the example given above, it turns out that Red should choose action 1 with probability 4/7 and action 2 with probability 3/7, and Blue should assign the probabilities 0, 4/7, and 3/7 to the three actions A, B, and C. Red will then win 20/7 points on average per game.

The Nash equilibrium for a two-player, zero-sum game can be found by solving a linear programming problem. Suppose a zero-sum game has a payoff matrix M where element *M*_{i,j} is the payoff obtained when the minimizing player chooses pure strategy i and the maximizing player chooses pure strategy j (i.e. the player trying to minimize the payoff chooses the row and the player trying to maximize the payoff chooses the column). Assume every element of M is positive. The game will have at least one Nash equilibrium. The Nash equilibrium can be found (Raghavan 1994, p. 740) by solving the following linear program to find a vector u:

- Minimize:
- Subject to the constraints:
*u*≥ 0*M u*≥ 1.

The first constraint says each element of the u vector must be nonnegative, and the second constraint says each element of the M u vector must be at least 1. For the resulting u vector, the inverse of the sum of its elements is the value of the game. Multiplying u by that value gives a probability vector, giving the probability that the maximizing player will choose each of the possible pure strategies.

If the game matrix does not have all positive elements, simply add a constant to every element that is large enough to make them all positive. That will increase the value of the game by that constant, and will have no effect on the equilibrium mixed strategies for the equilibrium.

The equilibrium mixed strategy for the minimizing player can be found by solving the dual of the given linear program. Or, it can be found by using the above procedure to solve a modified payoff matrix which is the transpose and negation of M (adding a constant so it's positive), then solving the resulting game.

If all the solutions to the linear program are found, they will constitute all the Nash equilibria for the game. Conversely, any linear program can be converted into a two-player, zero-sum game by using a change of variables that puts it in the form of the above equations. So such games are equivalent to linear programs, in general. ^{[ citation needed ]}

If avoiding a zero-sum game is an action choice with some probability for players, avoiding is always an equilibrium strategy for at least one player at a zero-sum game. For any two players zero-sum game where a zero-zero draw is impossible or non-credible after the play is started, such as poker, there is no Nash equilibrium strategy other than avoiding the play. Even if there is a credible zero-zero draw after a zero-sum game is started, it is not better than the avoiding strategy. In this sense, it's interesting to find reward-as-you-go in optimal choice computation shall prevail over all two players zero-sum games with regard to starting the game or not.^{ [4] }

The most common or simple example from the subfield of social psychology is the concept of "social traps". In some cases pursuing individual personal interest can enhance the collective well-being of the group, but in other situations all parties pursuing personal interest results in mutually destructive behavior.

It has been theorized by Robert Wright in his book * Nonzero: The Logic of Human Destiny *, that society becomes increasingly non-zero-sum as it becomes more complex, specialized, and interdependent.

In 1944, John von Neumann and Oskar Morgenstern proved that any non-zero-sum game for *n* players is equivalent to a zero-sum game with *n* + 1 players; the (*n* + 1)th player representing the global profit or loss.^{ [5] }

Zero-sum games and particularly their solutions are commonly misunderstood by critics of game theory, usually with respect to the independence and rationality of the players, as well as to the interpretation of utility functions. Furthermore, the word "game" does not imply the model is valid only for recreational games.^{ [1] }

Politics is sometimes called zero sum.^{ [6] }^{ [7] }^{ [8] }

In psychology, zero-sum thinking refers to the perception that a situation is like a zero-sum game, where one person's gain is another's loss.

**Game theory** is the study of mathematical models of strategic interaction among rational decision-makers. It has applications in all fields of social science, as well as in logic, systems science and computer science. Originally, it addressed zero-sum games, in which each participant's gains or losses are exactly balanced by those of the other participants. Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.

**Minimax** is a decision rule used in artificial intelligence, decision theory, game theory, statistics, and philosophy for *mini*mizing the possible loss for a worst case scenario. When dealing with gains, it is referred to as "maximin"—to maximize the minimum gain. Originally formulated for two-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.

The **prisoner's dilemma** is a standard example of a game analyzed in game theory that shows why two completely rational individuals might not cooperate, even if it appears that it is in their best interests to do so. It was originally framed by Merrill Flood and Melvin Dresher while working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence rewards and named it "prisoner's dilemma", presenting it as follows:

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of communicating with the other. The prosecutors lack sufficient evidence to convict the pair on the principal charge, but they have enough to convict both on a lesser charge. Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity either to betray the other by testifying that the other committed the crime, or to cooperate with the other by remaining silent. The possible outcomes are:

In game theory, the **Nash equilibrium**, named after the mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.

The **game of chicken**, also known as the **hawk–dove game** or **snowdrift game**, is a model of conflict for two players in game theory. The principle of the game is that while the outcome is ideal for one player to yield, but the individuals try to avoid it out of pride for not wanting to look like a 'chicken'. So each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game is for the most part over.

In game theory, the **best response** is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

In game theory, **coordination games** are a class of games with multiple pure strategy Nash equilibria in which players choose the same or corresponding strategies.

**Matching pennies** is the name for a simple game used in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even keeps both pennies, so wins one from Odd. If the pennies do not match Odd keeps both pennies, so receives one from Even.

In game theory, a player's **strategy** is any of the options which he or she chooses in a setting where the outcome depends *not only* on their own actions *but* on the actions of others. A player's strategy will determine the action which the player will take at any stage of the game.

In game theory, a **Bayesian game** is a game in which players have incomplete information about the other players. For example, a player may not know the exact payoff functions of the other players, but instead have beliefs about these payoff functions. These beliefs are represented by a probability distribution over the possible payoff functions.

**Backward induction** is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by first considering the last time a decision might be made and choosing what to do in any situation at that time. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation at every point in time. It was first used by Zermelo in 1913, to prove that chess has pure optimal strategies.

In game theory, **strategic dominance** occurs when one strategy is better than another strategy for one player, no matter how that player's opponents may play. Many simple games can be solved using dominance. The opposite, intransitivity, occurs in games where one strategy may be better or worse than another strategy for one player, depending on how the player's opponents may play.

In game theory, **trembling hand perfect equilibrium** is a refinement of Nash equilibrium due to Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or **tremble,** may choose unintended strategies, albeit with negligible probability.

In game theory, a **repeated game** is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. *Single stage game* or *single shot game* are names for non-repeated games.

In game theory, a **correlated equilibrium** is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from the recommended strategy, the distribution is called a correlated equilibrium.

**Quantal response equilibrium** (**QRE**) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with discrete strategies, although there are continuous-strategy analogues.

In game theory, an **epsilon-equilibrium**, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

In game theory, a **stochastic game**, introduced by Lloyd Shapley in the early 1950s, is a dynamic game with **probabilistic transitions** played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some **state**. The players select actions and each player receives a **payoff** that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.

In game theory, a **bimatrix game** is a simultaneous game for two players in which each player has a finite number of possible actions. The name comes from the fact that the normal form of such a game can be described by two matrices - matrix *A* describing the payoffs of player 1 and matrix *B* describing the payoffs of player 2.

- 1 2 Ken Binmore (2007).
*Playing for real: a text on game theory*. Oxford University Press US. ISBN 978-0-19-530057-4., chapters 1 & 7 - ↑ Bowles, Samuel (2004).
*Microeconomics: Behavior, Institutions, and Evolution*. Princeton University Press. pp. 33–36. ISBN 0-691-09163-3. - ↑ Wenliang Wang (2015). Pooling Game Theory and Public Pension Plan. ISBN 978-1507658246. Chapter 1 and Chapter 4.
- ↑ Wenliang Wang (2015). Pooling Game Theory and Public Pension Plan. ISBN 978-1507658246. Chapter 4.
- ↑
*Theory of Games and Economic Behavior*. Princeton University Press (1953). June 25, 2005. ISBN 9780691130613 . Retrieved 2018-02-25. - ↑ Rubin, Jennifer (2013-10-04). "The flaw in zero sum politics".
*The Washington Post*. Retrieved 2017-03-08. - ↑ "Lexington: Zero-sum politics".
*The Economist*. 2014-02-08. Retrieved 2017-03-08. - ↑ "Zero-sum game | Define Zero-sum game at".
*Dictionary.com*. Retrieved 2017-03-08.

*Misstating the Concept of Zero-Sum Games within the Context of Professional Sports Trading Strategies*, series*Pardon the Interruption*(2010-09-23) ESPN, created by Tony Kornheiser and Michael Wilbon, performance by Bill Simmons*Handbook of Game Theory – volume 2*, chapter*Zero-sum two-person games*, (1994) Elsevier Amsterdam, by Raghavan, T. E. S., Edited by Aumann and Hart, pp. 735–759, ISBN 0-444-89427-6*Power: Its Forms, Bases and Uses*(1997) Transaction Publishers, by Dennis Wrong^{[ ISBN missing ]}

- Play zero-sum games online by Elmer G. Wiens.
- Game Theory & its Applications – comprehensive text on psychology and game theory. (Contents and Preface to Second Edition.)
- A playable zero-sum game and its mixed strategy Nash equilibrium.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.