Game theory studies strategic interaction between individuals in situations called games. Classes of these games have been given names. This is a list of the most commonly studied games
Games can have several features, a few of the most common are listed here.
Game | Players | Strategies per player | No. of pure strategy Nash equilibria | Sequential | Perfect information | Zero sum | Move by nature |
---|---|---|---|---|---|---|---|
Battle of the sexes | 2 | 2 | 2 | No | No | No | No |
Blotto games | 2 | variable | variable | No | No | Yes | No |
Cake cutting | N, usually 2 | infinite | variable [1] | Yes | Yes | Yes | No |
Centipede game | 2 | variable | 1 | Yes | Yes | No | No |
Chicken (aka hawk-dove) | 2 | 2 | 2 | No | No | No | No |
Coordination game | N | variable | >2 | No | No | No | No |
Cournot game | 2 | infinite [2] | 1 | No | No | No | No |
Deadlock | 2 | 2 | 1 | No | No | No | No |
Dictator game | 2 | infinite [2] | 1 | N/A [3] | N/A [3] | Yes | No |
Diner's dilemma | N | 2 | 1 | No | No | No | No |
Dollar auction | 2 | 2 | 0 | Yes | Yes | No | No |
El Farol bar | N | 2 | variable | No | No | No | No |
Game without a value | 2 | infinite | 0 | No | No | Yes | No |
Gift-exchange game | N, usually 2 | variable | 1 | Yes | Yes | No | No |
Guess 2/3 of the average | N | infinite | 1 | No | No | Maybe [4] | No |
Kuhn poker | 2 | 27 & 64 | 0 | Yes | No | Yes | Yes |
Matching pennies | 2 | 2 | 0 | No | No | Yes | No |
Minimum Effort Game aka Weak-Link Game | N | infinite | infinite | No | No | No | No |
Muddy Children Puzzle | N | 2 | 1 | Yes | No | No | Yes |
Nash bargaining game | 2 | infinite [2] | infinite [2] | No | No | No | No |
Optional prisoner's dilemma | 2 | 3 | 1 | No | No | No | No |
Peace war game | N | variable | >2 | Yes | No | No | No |
Pirate game | N | infinite [2] | infinite [2] | Yes | Yes | No | No |
Platonia dilemma | N | 2 | No | Yes | No | No | |
Princess and monster game | 2 | infinite | 0 | No | No | Yes | No |
Prisoner's dilemma | 2 | 2 | 1 | No | No | No | No |
Public goods | N | infinite | 1 | No | No | No | No |
Rock, paper, scissors | 2 | 3 | 0 | No | No | Yes | No |
Screening game | 2 | variable | variable | Yes | No | No | Yes |
Signaling game | N | variable | variable | Yes | No | No | Yes |
Stag hunt | 2 | 2 | 2 | No | No | No | No |
Traveler's dilemma | 2 | N >> 1 | 1 | No | No | No | No |
Truel | 3 | 1-3 | infinite | Yes | Yes | No | No |
Trust game | 2 | infinite | 1 | Yes | Yes | No | No |
Ultimatum game | 2 | infinite [2] | infinite [2] | Yes | Yes | No | No |
Vickrey auction | N | infinite | 1 | No | No | No | Yes [5] |
Volunteer's dilemma | N | 2 | 2 | No | No | No | No |
War of attrition | 2 | 2 | 0 | No | No | No | No |
Game theory is the study of mathematical models of strategic interactions among rational agents. It has applications in many fields of social science, used extensively in economics as well as in logic, systems science and computer science. Initially game theory addressed two-person zero-sum games, in which a participant's gains or losses are exactly balanced by the losses and gains of the other participant. In the 1950’s it was extended to the study of non zero-sum games and was eventually game applied to a wide range of behavioral relations, and is now an umbrella term for the science of rational decision making in humans, animals, as well as computers.
Zero-sum game is a mathematical representation in game theory and economic theory of a situation that involves two sides, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, with the result that the net improvement in benefit of the game is zero.
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.
Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even wins and keeps both pennies. If the pennies do not match, then Odd wins and keeps both pennies.
In game theory, a player's strategy is any of the options which they choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines.
Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject.
In game theory, the battle of the sexes is a two-player coordination game that also involves elements of conflict. The game was introduced in 1957 by R. Duncan Luce and Howard Raiffa in their classic book, Games and Decisions. Some authors prefer to avoid assigning sexes to the players and instead use Players 1 and 2, and some refer to the game as Bach or Stravinsky, using two concerts as the two events. The game description here follows Luce and Raiffa's original story.
In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.
In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible probability.
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.
In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.
Sequential equilibrium is a refinement of Nash equilibrium for extensive form games due to David M. Kreps and Robert Wilson. A sequential equilibrium specifies not only a strategy for each of the players but also a belief for each of the players. A belief gives, for each information set of the game belonging to the player, a probability distribution on the nodes in the information set. A profile of strategies and beliefs is called an assessment for the game. Informally speaking, an assessment is a perfect Bayesian equilibrium if its strategies are sensible given its beliefs and its beliefs are confirmed on the outcome path given by its strategies. The definition of sequential equilibrium further requires that there be arbitrarily small perturbations of beliefs and associated strategies with the same property.
In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".
Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.
In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.
In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.
In algorithmic game theory, a succinct game or a succinctly representable game is a game which may be represented in a size much smaller than its normal form representation. Without placing constraints on player utilities, describing a game of players, each facing strategies, requires listing utility values. Even trivial algorithms are capable of finding a Nash equilibrium in a time polynomial in the length of such a large input. A succinct game is of polynomial type if in a game represented by a string of length n the number of players, as well as the number of strategies of each player, is bounded by a polynomial in n.
A Markov perfect equilibrium is an equilibrium concept in game theory. It has been used in analyses of industrial organization, macroeconomics, and political economy. It is a refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin.
Jean-François Mertens was a Belgian game theorist and mathematical economist.
In game theory, Mertens stability is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.