A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 [1] though it had been used by stamp collectors since 1893. [2] In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction. [3]
Vickrey's original paper mainly considered auctions where only a single, indivisible good is being sold. The terms Vickrey auction and second-price sealed-bid auction are, in this case only, equivalent and used interchangeably. In the case of multiple identical goods, the bidders submit inverse demand curves and pay the opportunity cost. [4]
Vickrey auctions are much studied in economic literature but uncommon in practice. Generalized variants of the Vickrey auction for multiunit auctions exist, such as the generalized second-price auction used in Google's and Yahoo!'s online advertisement programs [5] [6] (not incentive compatible) and the Vickrey–Clarke–Groves auction (incentive compatible).
In a Vickrey auction with private values each bidder maximizes their expected utility by bidding (revealing) their valuation of the item for sale. These type of auctions are sometimes used for specified pool trading in the agency mortgage-backed securities (MBS) market.
A Vickrey auction is decision efficient (the winner is the bidder with the highest valuation) under the most general circumstances;[ citation needed ] it thus provides a baseline model against which the efficiency properties of other types of auctions can be posited. It is only ex-post efficient (sum of transfers equal to zero) if the seller is included as "player zero," whose transfer equals the negative of the sum of the other players' transfers (i.e. the bids).
The dominant strategy in a Vickrey auction with a single, indivisible item is for each bidder to bid their true value of the item. [7]
Let be bidder i's value for the item. Let be bidder bid for the item. The payoff for bidder is
The strategy of overbidding is dominated by bidding truthfully (i.e. bidding ). Assume that bidder bids .
Thus the strategy of bidding higher than one's true valuation is dominated by the strategy of truthfully bidding. The strategy of underbidding is also dominated by bidding truthfully. Assume that bidder bids .
Thus the strategy of underbidding is dominated by the strategy of truthfully bidding. As truthful bidding dominates the other possible strategies (i.e. underbidding and overbidding), it is an optimal strategy.
The two most common auctions are the sealed first price (or high-bid) auction and the open ascending price (or English) auction. In the former each buyer submits a sealed bid. The high bidder is awarded the item and pays his or her bid. In the latter, the auctioneer announces successively higher asking prices and continues until no one is willing to accept a higher price. Suppose that a buyer's valuation is and the current asking price is . If , then the buyer loses by raising his hand. If and the buyer is not the current high bidder, it is more profitable to bid than to let someone else be the winner. Thus it is a dominant strategy for a buyer to drop out of the bidding when the asking price reaches his or her valuation. Thus, just as in the Vickrey sealed second price auction, the price paid by the buyer with the highest valuation is equal to the second highest value.
Consider then the expected payment in the sealed second-price auction. Vickrey considered the case of two buyers and assumed that each buyer's value was an independent draw from a uniform distribution with support . With buyers bidding according to their dominant strategies, a buyer with valuation wins if his opponent's value . Suppose that is the high value. Then the winning payment is uniformly distributed on the interval and so the expected payment of the winner is
We now argue that in the sealed first price auction the equilibrium bid of a buyer with valuation is
That is, the payment of the winner in the sealed first-price auction is equal to the expected revenue in the sealed second-price auction.
Suppose that buyer 2 bids according to the strategy , where is the buyer's bid for a valuation . We need to show that buyer 1's best response is to use the same strategy.
Note first that if buyer 2 uses the strategy , then buyer 2's maximum bid is and so buyer 1 wins with probability 1 with any bid of 1/2 or more. Consider then a bid on the interval . Let buyer 2's value be . Then buyer 1 wins if , that is, if . Under Vickrey's assumption of uniformly distributed values, the win probability is . Buyer 1's expected payoff is therefore
Note that takes on its maximum at .
This section needs additional citations for verification .(May 2009) |
In network routing, VCG mechanisms are a family of payment schemes based on the added value concept. The basic idea of a VCG mechanism in network routing is to pay the owner of each link or node (depending on the network model) that is part of the solution, its declared cost plus its added value. In many routing problems, this mechanism is not only strategyproof, but also the minimum among all strategyproof mechanisms.
In the case of network flows, unicast or multicast, a minimum-cost flow (MCF) in graph G is calculated based on the declared costs dk of each of the links and payment is calculated as follows:
Each link (or node) in the MCF is paid
where MCF(G) indicates the cost of the minimum-cost flow in graph G and G − ek indicates graph G without the link ek. Links not in the MCF are paid nothing. This routing problem is one of the cases for which VCG is strategyproof and minimum.
In 2004, it was shown that the expected VCG overpayment of an Erdős–Rényi random graph with n nodes and edge probability p, approaches
as n, approaches , for . Prior to this result, it was known that VCG overpayment in G(n, p) is
and
with high probability given
The most obvious generalization to multiple or divisible goods is to have all winning bidders pay the amount of the highest non-winning bid. This is known as a uniform price auction. The uniform-price auction does not, however, result in bidders bidding their true valuations as they do in a second-price auction unless each bidder has demand for only a single unit. A generalization of the Vickrey auction that maintains the incentive to bid truthfully is known as the Vickrey–Clarke–Groves (VCG) mechanism. The idea in VCG is that items are assigned to maximize the sum of utilities; then each bidder pays the "opportunity cost" that their presence introduces to all the other players. This opportunity cost for a bidder is defined as the total bids of all the other bidders that would have won if the first bidder had not bid, minus the total bids of all the other actual winning bidders.
A different kind of generalization is to set a reservation price—a minimum price below which the item is not sold at all. In some cases, setting a reservation price can substantially increase the revenue of the auctioneer. This is an example of Bayesian-optimal mechanism design.
In mechanism design, the revelation principle can be viewed as a generalization of the Vickrey auction.
In mechanism design, a strategyproof (SP) mechanism is a game form in which each player has a weakly-dominant strategy, so that no player can gain by "spying" over the other players to know what they are going to play. When the players have private information, and the strategy space of each player consists of the possible information values, a truthful mechanism is a game in which revealing the true information is a weakly-dominant strategy for each player. An SP mechanism is also called dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility.
An English auction is an open-outcry ascending dynamic auction. It proceeds as follows.
In common valueauctions the value of the item for sale is identical amongst bidders, but bidders have different information about the item's value. This stands in contrast to a private value auction where each bidder's private valuation of the item is different and independent of peers' valuations.
A Japanese auction is a dynamic auction format. It proceeds in the following way.
A double auction is a process of buying and selling goods with multiple sellers and multiple buyers. Potential buyers submit their bids and potential sellers submit their ask prices to the market institution, and then the market institution chooses some price p that clears the market: all the sellers who asked less than p sell and all buyers who bid more than p buy at this price p. Buyers and sellers that bid or ask for exactly p are also included. A common example of a double auction is stock exchange.
Auction theory is a branch of applied economics that deals with how bidders act in auctions and researches how the features of auctions incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The confluence of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues that can lead to market failure. The design of these rulesets encourages optimal bidding strategies in a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson "for improvements to auction theory and inventions of new auction formats."
The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism. It can be seen as a kind of mirror image to Gibbard's theorem. The revelation principle says that if a social choice function can be implemented with some non-honest mechanism—one where players have an incentive to lie—the same function can be implemented by an incentive-compatible (honesty-promoting) mechanism with the same equilibrium outcome (payoffs).
A first-price sealed-bid auction (FPSBA) is a common type of auction. It is also known as blind auction. In this type of auction, all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder pays the price that was submitted.
In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.
Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.
A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. It gives bidders an incentive to bid their true valuations, by ensuring that the optimal strategy for each bidder is to bid their true valuations of the items; it can be undermined by bidder collusion and in particular in some circumstances by a single bidder making multiple bids under different names. It is a generalization of a Vickrey auction for multiple items.
Market design is an interdisciplinary, engineering-driven approach to economics and a practical methodology for creation of markets of certain properties, which is partially based on mechanism design. In market design, the focus is on the rules of exchange, meaning who gets allocated what and by what procedure. Market design is concerned with the workings of particular markets in order to fix them when they are broken or to build markets when they are missing. Practical applications of market design theory has included labor market matching, organ transplantation, school choice, university admissions, and more.
The generalized second-price auction (GSP) is a non-truthful auction mechanism for multiple items. Each bidder places a bid. The highest bidder gets the first slot, the second-highest, the second slot and so on, but the highest bidder pays the price bid by the second-highest bidder, the second-highest pays the price bid by the third-highest, and so on. First conceived as a natural extension of the Vickrey auction, it conserves some of the desirable properties of the Vickrey auction. It is used mainly in the context of keyword auctions, where sponsored search slots are sold on an auction basis. The first analyses of GSP are in the economics literature by Edelman, Ostrovsky, and Schwarz and by Varian. It is used by Google's AdWords technology and Facebook.
A sponsored search auction (SSA), also known as a keyword auction, is an indispensable part of the business model of modern web hosts. It refers to results from a search engine that are not output by the main search algorithm, but rather clearly separate advertisements paid for by third parties. These advertisements are typically related to the terms for which the user searched. They come in the form of a link and some information, with the hope that a search user will click on the link and buy something from the advertiser. In sponsored search auctions, there are typically some fixed number of slots for advertisements and more advertisers that want these slots than there are slots. The advertisers have different valuations for these slots and slots are a scarce resource, so an auction is done to determine how the slots will be assigned.
In mechanism design, a Vickrey–Clarke–Groves (VCG) mechanism is a generic truthful mechanism for achieving a socially optimal solution. It is a generalization of a Vickrey–Clarke–Groves auction. A VCG auction performs a specific task: dividing items among people. A VCG mechanism is more general: it can be used to select any outcome out of a set of possible outcomes.
A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms.
A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables.
A sequential auction is an auction in which several items are sold, one after the other, to the same group of potential buyers. In a sequential first-price auction (SAFP), each individual item is sold using a first price auction, while in a sequential second-price auction (SASP), each individual item is sold using a second price auction.
In auction theory, jump bidding is the practice of increasing the current price in an English auction, substantially more than the minimal allowed amount.
The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.