Jump bidding

Last updated

In auction theory, jump bidding is the practice of increasing the current price in an English auction, substantially more than the minimal allowed amount.

Contents

Puzzle

At first glance, jump bidding seems irrational. Apparently, in an English auction, it is a dominant strategy for each buyer whose price is above the displayed price, to always bid the minimal allowed increment (e.g. one cent) above the displayed price. By bidding higher, the bidder gives up the opportunity to win the item at a lower price.

However, in practice buyers increase the displayed price much more than the minimal allowed increment. Buyers may even sometimes offer an increase on their own high bid, seemingly irrationally.

Several explanations have been suggested to this behavior.

Reducing bidding costs

When bidding is costly, or when time is costly, jump-bidding allows the bidders to reduce their total costs and get to the outcome faster. [1]

Signaling

Consider two veteran bidders, that compete with each other many times in English auctions. Each time, the higher-value bidder wins the item and pays the lower-value to the seller. Then, one day they decide to cooperate: they agree that from now on, the higher-value bidder will bid 1 and the lower-value bidder will bid 0. This way, the higher-value bidder will always win the item for free. Such cooperation could be very beneficial to both bidders in the long run. The problem is, it cannot be enforced, because both bidders have an incentive to say that their value is higher than it really is.

Here jump-bidding comes into play. It works like a signaling game. [2] By jump-bidding, the jumper signals that he has a high value, and so the other bidder should quit immediately if his value is lower.

Numeric example

Two bidders, Xenia and Yakov, participate in an auction for a single item. This is a common value auction with the following parameters, where A B and C are independent uniform random variables on the interval (0,36):

The auction proceeds in two stages:

  1. In the first stage, each bidder bids either 0 (no jump) or K (jump). If exactly one bidder jumped, then this bidder wins the item and pays K and the auction is over. Otherwise -
  2. In the second stage, there is an incremental auction (a Japanese auction) starting at the current price. The initial price is 0 if no bidder jumped, or K if both jumped.

We show that there exists a symmetric perfect Bayesian equilibrium in which each bidder jumps if-and-only-if his value is above a certain threshold value, T. To show this, we proceed backwards.

In the second stage, there is a symmetric equilibrium in which each bidder exits at his observed value - Xenia exits at X and Yakov at Y.[ why? ]

In the first stage, we take Xenia's viewpoint. Assume that Yakov's strategy is to jump if-and-only-if his signal is at least T. We calculate Xenia's best response. There are four cases to consider, depending on whether Xenia/Yakov jumps/passes. The following table shows Xenia's expected net gain in each of these cases:

Xenia jumpsXenia passes
Yakov jumps0
Yakov passes

At the threshold (X=T), Xenia should be indifferent between jumping and passing:

So the symmetric PBE strategy (at least when ) is that each bidder jumps to if-and-only-if his signal is at least .

The outcome of this PBE is substantially different than that of a standard Japanese auction (with no jump option). As an example, let the jump-level be . Hence - the symmetric PBE strategy is to jump if-and-only-if the signal is at least 36. So if Xenia's value is e.g. 33 and Yakov's value is 39, then Xenia will pass and Yakov will jump, so Yakov will win and pay only 24. In contrast, in a simple Japanese auction, Xenia will stay up to her value of 33, so Yakov will win and pay 33.

This outcome seems counter-intuitive from two reasons:

Jump-bidding is a very crude form of communication: it does not communicate my actual value, it only signals that my value is above a certain threshold. The careful selection of the threshold and the jump-height guarantee that this communication is a self-enforcing agreement: it is best for both bidders to communicate truthfully.

Manipulating the outcome using the discreteness of prices

Since bidding proceeds in discrete steps, jump bidding can alter the outcome. For example, suppose the initial price is 0, the minimal increment is 2 and the values are 9 and 10. Then, without jumping, the 9-bidder will increase the price to 2, the 10-bidder will increase the price to 4, the 9-bidder to 6, the 10-bidder to 8, and the 9-bidder will have to quit, so the 10-bidder will win and pay 8. But, if the 9-bidder jumps from 0 to 8, the 10-bidder might quit and the 9-bidder will win and pay 8. [3]

Effects

Some authors claim that jump-bidding reduces the seller's revenue, since the signaling allows bidders to collude and reduce the final price. [2] Therefore, it may be more profitable for the seller to use an auction format that does not allow jump-bidding, such as a Japanese auction.

Other authors dispute this claim. [3] [ who? ]

See also

Related Research Articles

<span class="mw-page-title-main">Auction</span> Process of offering goods or services up for bids

An auction is usually a process of buying and selling goods or services by offering them up for bids, taking bids, and then selling the item to the highest bidder or buying the item from the lowest bidder. Some exceptions to this definition exist and are described in the section about different types. The branch of economic theory dealing with auction types and participants' behavior in auctions is called auction theory.

<span class="mw-page-title-main">Dutch auction</span> Type of auction which begins with a high asking price, and lowers it.

A Dutch auction is one of several similar types of auctions for buying or selling goods. Most commonly, it means an auction in which the auctioneer begins with a high asking price in the case of selling, and lowers it until some participant accepts the price, or it reaches a predetermined reserve price. This type of price auction is most commonly used for goods that are required to be sold quickly such as flowers, fresh produce, or tobacco. A Dutch auction has also been called a clock auction or open-outcry descending-price auction. This type of auction shows the advantage of speed since a sale never requires more than one bid. It is strategically similar to a first-price sealed-bid auction.

<span class="mw-page-title-main">Vickrey auction</span> Auction priced by second-highest sealed bid

A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 though it had been used by stamp collectors since 1893. In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.

<span class="mw-page-title-main">English auction</span> Type of dynamic auction

An English auction is an open-outcry ascending dynamic auction. It proceeds as follows.

In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.

<span class="mw-page-title-main">Linkage principle</span>

The linkage principle is a finding of auction theory. It states that auction houses have an incentive to pre-commit to revealing all available information about each lot, positive or negative. The linkage principle is seen in the art market with the tradition of auctioneers hiring art experts to examine each lot and pre-commit to provide a truthful estimate of its value.

<span class="mw-page-title-main">Common value auction</span>

In common valueauctions the value of the item for sale is identical amongst bidders, but bidders have different information about the item's value. This stands in contrast to a private value auction where each bidder's private valuation of the item is different and independent of peers' valuations.

<span class="mw-page-title-main">Japanese auction</span>

A Japanese auction is a dynamic auction format. It proceeds in the following way.

In game theory, the war of attrition is a dynamic timing game in which players choose a time to stop, and fundamentally trade off the strategic gains from outlasting other players and the real costs expended with the passage of time. Its precise opposite is the pre-emption game, in which players elect a time to stop, and fundamentally trade off the strategic costs from outlasting other players and the real gains occasioned by the passage of time. The model was originally formulated by John Maynard Smith; a mixed evolutionarily stable strategy (ESS) was determined by Bishop & Cannings. An example is a second price all-pay auction, in which the prize goes to the player with the highest bid and each player pays the loser's low bid.

<span class="mw-page-title-main">Auction sniping</span> Bidding at the last moment as an auction strategy

Auction sniping is the practice, in a timed online auction, of placing a bid likely to exceed the current highest bid as late as possible—usually seconds before the end of the auction—giving other bidders no time to outbid the sniper. This can be done either manually or by software on the bidder's computer, or by an online sniping service.

<span class="mw-page-title-main">Auction theory</span> Branch of applied economics regarding the behavior of bidders in auctions

Auction theory is an applied branch of economics which deals with how bidders act in auction markets and researches how the features of auction markets incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The conference of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues which can lead to market failure. The design of these rulesets encourages optimal bidding strategies among a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.”

Proxy bidding is an implementation of an English second-price auction used on eBay, in which the winning bidder pays the price of the second-highest bid plus a defined increment. It differs from a Vickrey auction in that bids are not sealed; the "current highest bid" is always displayed.

<span class="mw-page-title-main">First-price sealed-bid auction</span> Auction where all participants concurrently submit undisclosed bids

A first-price sealed-bid auction (FPSBA) is a common type of auction. It is also known as blind auction. In this type of auction, all bidders simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder pays the price that was submitted.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">All-pay auction</span>

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

<span class="mw-page-title-main">Revenue equivalence</span>

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.

<span class="mw-page-title-main">Vickrey–Clarke–Groves auction</span> Type of sealed-bid multiple-item auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. It gives bidders an incentive to bid their true valuations, by ensuring that the optimal strategy for each bidder is to bid their true valuations of the items; it can be undermined by bidder collusion and in particular in some circumstances by a single bidder making multiple bids under different names. It is a generalization of a Vickrey auction for multiple items.

<span class="mw-page-title-main">Market design</span>

Market design is a practical methodology for creation of markets of certain properties, which is partially based on mechanism design. In some markets, prices may be used to induce the desired outcomes — these markets are the study of auction theory. In other markets, prices may not be used — these markets are the study of matching theory.

A sequential auction is an auction in which several items are sold, one after the other, to the same group of potential buyers. In a sequential first-price auction (SAFP), each individual item is sold using a first price auction, while in a sequential second-price auction (SASP), each individual item is sold using a second price auction.

<span class="mw-page-title-main">Price of anarchy in auctions</span>

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.

References

  1. Daniel, Kent D.; Hirshleifer, David A. (1999). "A Theory of Costly Sequential Bidding". SSRN Electronic Journal. doi:10.2139/ssrn.161013. hdl: 2027.42/35541 .
  2. 1 2 Avery, Christopher (1998). "Strategic Jump Bidding in English Auctions". Review of Economic Studies. 65 (2): 185–210. doi:10.1111/1467-937x.00041.
  3. 1 2 Isaac, R. Mark; Salmon, Timothy C.; Zillante, Arthur (2007). "A theory of jump bidding in ascending auctions". Journal of Economic Behavior & Organization. 62: 144–164. doi:10.1016/j.jebo.2004.04.009.