WikiMili The Free Encyclopedia

In game theory, a **Markov strategy** is one that depends only on state variables that summarize the history of the game in one way or another.^{ [1] } For instance, a state variable can be the current play in a repeated game, or it can be any interpretation of a recent sequence of play.

**Game theory** is the study of mathematical models of strategic interaction between rational decision-makers. It has applications in all fields of social science, as well as in logic and computer science. Originally, it addressed zero-sum games, in which one person's gains result in losses for the other participants. Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.

A profile of Markov strategies is a Markov perfect equilibrium if it is a Nash equilibrium in every state of the game.

An **evolutionarily stable strategy** (**ESS**) is a strategy which, if adopted by a population in a given environment, is impenetrable, meaning that it cannot be invaded by any alternative strategy that are initially rare. It is relevant in game theory, behavioural ecology, and evolutionary psychology. An ESS is an equilibrium refinement of the Nash equilibrium. It is a Nash equilibrium that is "evolutionarily" stable: once it is fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from invading successfully. The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.

In game theory and economic theory, a **zero-sum game** is a mathematical representation of a situation in which each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a larger piece reduces the amount of cake available for others, is a zero-sum game if all participants value each unit of cake equally.

In game theory, the **Nash equilibrium**, named after the mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.

**Hidden Markov Model** (**HMM**) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobservable states.

The **game of chicken**, also known as the **hawk–dove game** or **snowdrift game**, is a model of conflict for two players in game theory. The principle of the game is that while it is to both players’ benefit if one player yields, the other player's optimal choice depends on what their opponent is doing: if the player opponent yields, they should not, but if the opponent fails to yield, the player should.

In game theory, the **best response** is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

In systems theory, a system or a process is in a **steady state** if the variables which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties *p* of the system, the partial derivative with respect to time is zero and remains so:

In game theory, a player's **strategy** is any of the options which he or she chooses in a setting where the outcome depends *not only* on their own actions *but* on the actions of others. A player's strategy will determine the action which the player will take at any stage of the game.

In game theory, a **solution concept** is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

In game theory, **strategic dominance** occurs when one strategy is better than another strategy for one player, no matter how that player's opponents may play. Many simple games can be solved using dominance. The opposite, intransitivity, occurs in games where one strategy may be better or worse than another strategy for one player, depending on how the player's opponents may play.

In game theory, **folk theorems** are a class of theorems about possible Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept subgame-perfect Nash equilibria rather than Nash equilibrium.

In game theory, a **repeated game** is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. *Single stage game* or *single shot game* are names for non-repeated games.

In game theory, a **correlated equilibrium** is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from the recommended strategy, the distribution is called a correlated equilibrium.

In game theory, the **purification theorem** was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

In game theory, a **subgame perfect equilibrium** is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that if the players played any smaller game that consisted of only one part of the larger game, their behavior would represent a Nash equilibrium of that smaller game. Every finite extensive game has a subgame perfect equilibrium.

**Risk dominance** and **payoff dominance** are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered **payoff dominant** if it is Pareto superior to all other Nash equilibria in the game. When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered **risk dominant** if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

In game theory, an **epsilon-equilibrium**, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

In game theory, a **stochastic game**, introduced by Lloyd Shapley in the early 1950s, is a dynamic game with **probabilistic transitions** played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some **state**. The players select actions and each player receives a **payoff** that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.

A **Markov perfect equilibrium** is an equilibrium concept in game theory. It is the refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be readily identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin. It has since been used, among else, in the analysis of industrial organization, macroeconomics and political economy.

- ↑ Fudenberg, Drew (1995).
*Game Theory*. Cambridge, MA: The MIT Press. pp. 501–40. ISBN 0-262-06141-4.

This game theory article is a stub. You can help Wikipedia by expanding it. |

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.