Coalition-proof Nash equilibrium

Last updated

The concept of coalition-proof Nash equilibrium applies to certain "noncooperative" environments in which players can freely discuss their strategies but cannot make binding commitments. [1] It emphasizes the immunization to deviations that are self-enforcing. While the best-response property in Nash equilibrium is necessary for self-enforceability, it is not generally sufficient when players can jointly deviate in a way that is mutually beneficial.

The Strong Nash equilibrium is criticized as too "strong" in that the environment allows for unlimited private communication. [1] In the coalition-proof Nash equilibrium the private communication is limited. [1]

Formal definition. [1] (i) In a single player, single stage game , is a Perfectly Coalition-Proof Nash equilibrium if and only if maximizes . (ii) Let (n,t) ≠ (1,1). Assume that Perfectly Coalition-Proof Nash equilibrium has been defined for all games with m players and s stages, where (m, s) ≤ (n, t), and (m, s) ≠ (n, t). (a) For any game with players and stages, is perfectly self-enforcing if, for all J in J (set of all coalitions), sJ* is a Perfectly Coalition-Proof Nash equilibrium in the game Γ/s*−J, and if the restriction of s* to any proper subgame forms a Perfectly Coalition-Proof Nash equilibrium in that subgame. (b) For any game Γ with n players and t stages, is a Perfectly Coalition-Proof Nash equilibrium if it is perfectly self-enforcing, and if there does not exist another perfectly self-enforcing strategy vector s in S such that g1(s)> g1(s*) for all i= 1,...,n.

Less formal: At first all players are in a room deliberating their strategies. Then one by one, they leave the room fixing their strategy and only those left are allowed to change their strategies, both individually and together.

The coalition-proof Nash equilibrium refines the Nash equilibrium by adopting a stronger notion of self-enforceability that allows multilateral deviations.

Parallel to the idea of correlated equilibrium as an extension to Nash equilibrium when public signalling device is allowed, coalition-proof equilibrium is defined by Diego Moreno and John Wooders. [2]

Related Research Articles

In game theory, the Nash equilibrium, named after the mathematician John Forbes Nash Jr., is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players and no player has anything to gain by changing only their own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who applied it to competing firms choosing outputs.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject.

In game theory, grim trigger is a trigger strategy for a repeated game.

Solution concept

In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

An extensive-form game is a specification of a game in game theory, allowing for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".

In game theory, a Perfect Bayesian Equilibrium (PBE) is an equilibrium concept relevant for dynamic games with incomplete information. It is a refinement of Bayesian Nash equilibrium (BNE). A perfect Bayesian equilibrium has two components -- strategies and beliefs:

Backward induction is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by examining the last point at which a decision is to be made and then identifying what action would be most optimal at that moment. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation at every point in time. Backward induction was first used in 1875 by Arthur Cayley, who uncovered the method while trying to solve the infamous Secretary Problem.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

Quantal response equilibrium (QRE) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with discrete strategies, although there are continuous-strategy analogues.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

In game theory, a stochastic game, introduced by Lloyd Shapley in the early 1950s, is a repeated game with probabilistic transitions played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and each player receives a payoff that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.

In game theory a strong Nash equilibrium is a Nash equilibrium in which no coalition, taking the actions of its complements as given, can cooperatively deviate in a way that benefits all of its members. While the Nash concept of stability defines equilibrium only in terms of unilateral deviations, strong Nash equilibrium allows for deviations by every conceivable coalition. This equilibrium concept is particularly useful in areas such as the study of voting systems, in which there are typically many more players than possible outcomes, and so plain Nash equilibria are far too abundant.

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents in the worst case. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Let efficiency in this case mean the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

Mertens stability is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.

The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they personally will receive the highest payoff given other players' strategies, in a Berge equilibrium every player ensures that all other players will receive the highest payoff possible. Although Berge introduced the intuition for this equilibrium notion in 1957, it was only formally defined by Vladislav Iosifovich Zhukovskii in 1985, and it was not in widespread use until half a century after Berge originally developed it.

References

  1. 1 2 3 4 B. D. Bernheim; B. Peleg; M. D. Whinston (1987). "Coalition-Proof Nash Equilibria I. Concepts". Journal of Economic Theory. 42: 1–12. doi:10.1016/0022-0531(87)90099-8.
  2. Diego Moreno; John Wooders (1996), "Coalition-Proof Equilibrium" (PDF), Games and Economic Behavior, 17: 82–112, doi:10.1006/game.1996.0095, hdl: 10016/4408 .