On Numbers and Games

Last updated
On Numbers and Games
On Numbers and Games.jpg
First edition
Author John Horton Conway
Country United States
Language English
Genre Mathematics
Publisher Academic Press, Inc.
Media typePrint
Pages238 pp.
ISBN 0-12-186350-6

On Numbers and Games is a mathematics book by John Horton Conway first published in 1976. [1] The book is written by a pre-eminent mathematician, and is directed at other mathematicians. The material is, however, developed in a playful and unpretentious manner and many chapters are accessible to non-mathematicians. Martin Gardner discussed the book at length, particularly Conway's construction of surreal numbers, in his Mathematical Games column in Scientific American in September 1976. [2]

Contents

The book is roughly divided into two sections: the first half (or Zeroth Part), on numbers, the second half (or First Part), on games. In the Zeroth Part, Conway provides axioms for arithmetic: addition, subtraction, multiplication, division and inequality. This allows an axiomatic construction of numbers and ordinal arithmetic, namely, the integers, reals, the countable infinity, and entire towers of infinite ordinals. The object to which these axioms apply takes the form {L|R}, which can be interpreted as a specialized kind of set; a kind of two-sided set. By insisting that L<R, this two-sided set resembles the Dedekind cut. The resulting construction yields a field, now called the surreal numbers. The ordinals are embedded in this field. The construction is rooted in axiomatic set theory, and is closely related to the Zermelo–Fraenkel axioms. In the original book, Conway simply refers to this field as "the numbers". The term "surreal numbers" is adopted later, at the suggestion of Donald Knuth.

In the First Part, Conway notes that, by dropping the constraint that L<R, the axioms still apply and the construction goes through, but the resulting objects can no longer be interpreted as numbers. They can be interpreted as the class of all two-player games. The axioms for greater than and less than are seen to be a natural ordering on games, corresponding to which of the two players may win. The remainder of the book is devoted to exploring a number of different (non-traditional, mathematically inspired) two-player games, such as nim, hackenbush, and the map-coloring games col and snort. The development includes their scoring, a review of the Sprague–Grundy theorem, and the inter-relationships to numbers, including their relationship to infinitesimals.

The book was first published by Academic Press in 1976, ISBN   0-12-186350-6, and a second edition was released by A K Peters in 2001 ( ISBN   1-56881-127-6).

Zeroth Part ... On Numbers

In the Zeroth Part, Chapter 0, Conway introduces a specialized form of set notation, having the form {L|R}, where L and R are again of this form, built recursively, terminating in {|}, which is to be read as an analog of the empty set. Given this object, axiomatic definitions for addition, subtraction, multiplication, division and inequality may be given. As long as one insists that L<R (with this holding vacuously true when L or R are the empty set), then the resulting class of objects can be interpreted as numbers, the surreal numbers. The {L|R} notation then resembles the Dedekind cut.

The ordinal is built by transfinite induction. As with conventional ordinals, can be defined. Thanks to the axiomatic definition of subtraction, can also be coherently defined: it is strictly less than , and obeys the "obvious" equality Yet, it is still larger than any natural number.

The construction enables an entire zoo of peculiar numbers, the surreals, which form a field. Examples include , , , and similar.

First Part ... and Games

In the First Part, Conway abandons the constraint that L<R, and then interprets the form {L|R} as a two-player game: a position in a contest between two players, Left and Right. Each player has a set of games called options to choose from in turn. Games are written {L|R} where L is the set of Left's options and R is the set of Right's options. [3] At the start there are no games at all, so the empty set (i.e., the set with no members) is the only set of options we can provide to the players. This defines the game {|}, which is called 0. We consider a player who must play a turn but has no options to have lost the game. Given this game 0 there are now two possible sets of options, the empty set and the set whose only element is zero. The game {0|} is called 1, and the game {|0} is called -1. The game {0|0} is called * (star), and is the first game we find that is not a number.

All numbers are positive, negative, or zero, and we say that a game is positive if Left has a winning strategy, negative if Right has a winning strategy, or zero if the second player has a winning strategy. Games that are not numbers have a fourth possibility: they may be fuzzy, meaning that the first player has a winning strategy. * is a fuzzy game. [4]

See also

Related Research Articles

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

<i>Naive Set Theory</i> (book) 1960 mathematics textbook by Paul Halmos

Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. Originally published by Van Nostrand in 1960, it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974.

<span class="mw-page-title-main">Surreal number</span> Generalization of the real numbers

In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.

In set theory, a field of mathematics, the Burali-Forti paradox demonstrates that constructing "the set of all ordinal numbers" leads to a contradiction and therefore shows an antinomy in a system that allows its construction. It is named after Cesare Burali-Forti, who, in 1897, published a paper proving a theorem which, unknown to him, contradicted a previously proved result by Georg Cantor. Bertrand Russell subsequently noticed the contradiction, and when he published it in his 1903 book Principles of Mathematics, he stated that it had been suggested to him by Burali-Forti's paper, with the result that it came to be known by Burali-Forti's name.

In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term transfinite was coined in 1895 by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term transfinite also remains in use.

In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.

In the mathematical discipline of set theory, 0# is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O#.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

Zermelo set theory, as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text and original numbering.

In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as V = L. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms. Generalizations of this axiom are explored in inner model theory.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.

In mathematics, the axiom of determinacy is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy.

In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".

In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

In proof theory, ordinal analysis assigns ordinals to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory.

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

<span class="mw-page-title-main">Ordinal number</span> Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

References

  1. Fraenkel, Aviezri S. (1978). "Review: On numbers and games, by J. H. Conway; and Surreal numbers, by D. E. Knuth" (PDF). Bull. Amer. Math. Soc. 84 (6): 1328–1336. doi: 10.1090/s0002-9904-1978-14564-9 .
  2. Gardner, Martin (September 1976). "Mathematical Games". Scientific American . Vol. 235, no. 3.
  3. Alternatively, we often list the elements of the sets of options to save on braces. This causes no confusion as long as we can tell whether a singleton option is a game or a set of games.
  4. Schleicher, Dierk; Stoll, Michael (2006). "An Introduction to Conway's Games and Numbers". Moscow Math Journal. 6 (2): 359–388. arXiv: math.CO/0410026 . doi:10.17323/1609-4514-2006-6-2-359-388.