In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.
The sum of two well-ordered sets S and T is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products S × {0} and T × {1}. This way, every element of S is smaller than every element of T, comparisons within S keep the order they already have, and likewise for comparisons within T.
The definition of addition α + β can also be given by transfinite recursion on β. When the right addend β = 0, ordinary addition gives α + 0 = α for any α. For β > 0, the value of α + β is the smallest ordinal strictly greater than the sum of α and δ for all δ < β. Writing the successor and limit ordinals cases separately:
Ordinal addition on the natural numbers is the same as standard addition. The first transfinite ordinal is ω, the set of all natural numbers, followed by ω + 1, ω + 2, etc. The ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like
This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors.
Ordinal addition is, in general, not commutative. For example, 3 + ω = ω since the order relation for 3 + ω is 0 < 1 < 2 < 0' < 1' < 2' < ..., which can be relabeled to ω. In contrast ω + 3 is not equal to ω since the order relation 0 < 1 < 2 < ... < 0' < 1' < 2' has a largest element (namely, 2') and ω does not (ω and ω + 3 are equipotent, but not order isomorphic).
Ordinal addition is still associative; one can see for example that (ω + 4) + ω = ω + (4 + ω) = ω + ω.
Addition is strictly increasing and continuous in the right argument:
but the analogous relation does not hold for the left argument; instead we only have:
Ordinal addition is left-cancellative: if α + β = α + γ, then β = γ. Furthermore, one can define left subtraction for ordinals β ≤ α: there is a unique γ such that α = β + γ. On the other hand, right cancellation does not work:
Nor does right subtraction, even when β ≤ α: for example, there does not exist any γ such that γ + 42 = ω.
If the ordinals less than α are closed under addition and contain 0, then α is occasionally called a γ-number (see additively indecomposable ordinal). These are exactly the ordinals of the form ωβ.
The Cartesian product, S × T, of two well-ordered sets S and T can be well-ordered by a variant of lexicographical order that puts the least significant position first. Effectively, each element of T is replaced by a disjoint copy of S. The order-type of the Cartesian product is the ordinal that results from multiplying the order-types of S and T.
The definition of multiplication can also be given by transfinite recursion on β. When the right factor β = 0, ordinary multiplication gives α · 0 = 0 for any α. For β > 0, the value of α · β is the smallest ordinal greater than or equal to (α · δ) + α for all δ < β. Writing the successor and limit ordinals cases separately:
As an example, here is the order relation for ω · 2:
which has the same order type as ω + ω. In contrast, 2 · ω looks like this:
and after relabeling, this looks just like ω. Thus, ω · 2 = ω+ω ≠ ω = 2 · ω, showing that multiplication of ordinals is not in general commutative, c.f. pictures.
As is the case with addition, ordinal multiplication on the natural numbers is the same as standard multiplication.
α · 0 = 0 · α = 0, and the zero-product property holds: α · β = 0 → α = 0 or β = 0. The ordinal 1 is a multiplicative identity, α · 1 = 1 · α = α. Multiplication is associative, (α · β) · γ = α · (β · γ). Multiplication is strictly increasing and continuous in the right argument: (α < β and γ > 0) → γ·α < γ·β. Multiplication is not strictly increasing in the left argument, for example, 1 < 2 but 1 · ω = 2 · ω = ω. However, it is (non-strictly) increasing, i.e. α ≤ β → α·γ ≤ β·γ.
Multiplication of ordinals is not in general commutative. Specifically, a natural number greater than 1 never commutes with any infinite ordinal, and two infinite ordinals α and β commute if and only if αm = βn for some nonzero natural numbers m and n. The relation "α commutes with β" is an equivalence relation on the ordinals greater than 1, and all equivalence classes are countably infinite.
Distributivity holds, on the left: α(β + γ) = αβ + αγ. However, the distributive law on the right (β + γ)α = βα+γα is not generally true: (1 + 1) · ω = 2 · ω = ω while 1 · ω + 1 · ω = ω + ω, which is different. There is a left cancellation law: If α > 0 and α · β = α · γ, then β = γ. Right cancellation does not work, e.g. 1 · ω = 2 · ω = ω, but 1 and 2 are different. A left division with remainder property holds: for all α and β, if β > 0, then there are unique γ and δ such that α = β · γ + δ and δ < β. Right division does not work: there is no α such that α · ω ≤ ωω ≤ (α + 1) · ω.
The ordinal numbers form a left near-semiring, but do not form a ring. Hence the ordinals are not a Euclidean domain, since they are not even a ring; furthermore the Euclidean "norm" would be ordinal-valued using the left division here.
A δ-number (see Multiplicatively indecomposable ordinal) is an ordinal β greater than 1 such that αβ = β whenever 0 < α < β. These consist of the ordinal 2 and the ordinals of the form β = ωωγ.
The definition of exponentiation via order types is most easily explained using Von Neumann's definition of an ordinal as the set of all smaller ordinals. Then, to construct a set of order type αβ consider the set of all functions f : β → α such that f(x) = 0 for all but finitely many elements x∈β (essentially, we consider the functions with finite support). This set is ordered lexicographically with the least significant position first: we write f < g if and only if there exists x∈β with f(x) < g(x) and f(y) = g(y) for all y∈β with x < y. This is a well-ordering and hence gives an ordinal number.
The definition of exponentiation can also be given by transfinite recursion on the exponent β. When the exponent β = 0, ordinary exponentiation gives α0 = 1 for any α. For β > 0, the value of αβ is the smallest ordinal greater than or equal to αδ · α for all δ < β. Writing the successor and limit ordinals cases separately:
Both definitions simplify considerably if the exponent β is a finite number: αβ is then just the product of β copies of α; e.g. ω3 = ω·ω·ω, and the elements of ω3 can be viewed as triples of natural numbers, ordered lexicographically with least significant position first. This agrees with the ordinary exponentiation of natural numbers.
But for infinite exponents, the definition may not be obvious. For example, αω can be identified with a set of finite sequences of elements of α, properly ordered. The equation 2ω = ω expresses the fact that finite sequences of zeros and ones can be identified with natural numbers, using the binary number system. The ordinal ωω can be viewed as the order type of finite sequences of natural numbers; every element of ωω (i.e. every ordinal smaller than ωω) can be uniquely written in the form where k, n1, ..., nk are natural numbers, c1, ..., ck are nonzero natural numbers, and n1 > ... > nk.
The same is true in general: every element of αβ (i.e. every ordinal smaller than αβ) can be uniquely written in the form where k is a natural number, b1, ..., bk are ordinals smaller than β with b1 > ... > bk, and a1, ..., ak are nonzero ordinals smaller than α. This expression corresponds to the function f : β → α which sends bi to ai for i = 1, ..., k and sends all other elements of β to 0.
While the same exponent-notation is used for ordinal exponentiation and cardinal exponentiation, the two operations are quite different and should not be confused. The cardinal exponentiation AB is defined to be the cardinal number of the set of all functions B → A, while the ordinal exponentiation αβ only contains the functions β → α with finite support, typically a set of much smaller cardinality. To avoid confusing ordinal exponentiation with cardinal exponentiation, one can use symbols for ordinals (e.g. ω) in the former and symbols for cardinals (e.g. ) in the latter.
Jacobsthal showed that the only solutions of αβ = βα with α ≤ β are given by α = β, or α = 2 and β = 4, or α is any limit ordinal and β = εα where ε is an ε-number larger than α. [1]
There are ordinal operations that continue the sequence begun by addition, multiplication, and exponentiation, including ordinal versions of tetration, pentation, and hexation. See also Veblen function.
Every ordinal number α can be uniquely written as , where k is a natural number, are nonzero natural numbers, and are ordinal numbers. The degenerate case α = 0 occurs when k = 0 and there are no βs nor cs. This decomposition of α is called the Cantor normal form of α, and can be considered the base-ω positional numeral system. The highest exponent is called the degree of , and satisfies . The equality applies if and only if . In that case Cantor normal form does not express the ordinal in terms of smaller ones; this can happen as explained below.
A minor variation of Cantor normal form, which is usually slightly easier to work with, is to set all the numbers ci equal to 1 and allow the exponents to be equal. In other words, every ordinal number α can be uniquely written as , where k is a natural number, and are ordinal numbers.
Another variation of the Cantor normal form is the "base δ expansion", where ω is replaced by any ordinal δ > 1, and the numbers ci are nonzero ordinals less than δ.
The Cantor normal form allows us to uniquely express—and order—the ordinals α that are built from the natural numbers by a finite number of arithmetical operations of addition, multiplication and exponentiation base-: in other words, assuming in the Cantor normal form, we can also express the exponents in Cantor normal form, and making the same assumption for the as for α and so on recursively, we get a system of notation for these ordinals (for example,
denotes an ordinal).
The ordinal ε0 (epsilon nought) is the set of ordinal values α of the finite-length arithmetical expressions of Cantor normal form that are hereditarily non-trivial where non-trivial means β1<α when 0<α. It is the smallest ordinal that does not have a finite arithmetical expression in terms of ω, and the smallest ordinal such that , i.e. in Cantor normal form the exponent is not smaller than the ordinal itself. It is the limit of the sequence
The ordinal ε0 is important for various reasons in arithmetic (essentially because it measures the proof-theoretic strength of the first-order Peano arithmetic: that is, Peano's axioms can show transfinite induction up to any ordinal less than ε0 but not up to ε0 itself).
The Cantor normal form also allows us to compute sums and products of ordinals: to compute the sum, for example, one need merely know (see the properties listed in § Addition and § Multiplication) that
if (if one can apply the distributive law on the left and rewrite this as , and if the expression is already in Cantor normal form); and to compute products, the essential facts are that when is in Cantor normal form and , then
and
if n is a non-zero natural number.
To compare two ordinals written in Cantor normal form, first compare , then , then , then , and so on. At the first occurrence of inequality, the ordinal that has the larger component is the larger ordinal. If they are the same until one terminates before the other, then the one that terminates first is smaller.
Ernst Jacobsthal showed that the ordinals satisfy a form of the unique factorization theorem: every nonzero ordinal can be written as a product of a finite number of prime ordinals. This factorization into prime ordinals is in general not unique, but there is a "minimal" factorization into primes that is unique up to changing the order of finite prime factors ( Sierpiński 1958 ).
A prime ordinal is an ordinal greater than 1 that cannot be written as a product of two smaller ordinals. Some of the first primes are 2, 3, 5, ... , ω, ω + 1, ω2 + 1, ω3 + 1, ..., ωω, ωω + 1, ωω + 1 + 1, ... There are three sorts of prime ordinals:
Factorization into primes is not unique: for example, 2×3 = 3×2, 2×ω = ω, (ω+1)×ω = ω×ω and ω×ωω = ωω. However, there is a unique factorization into primes satisfying the following additional conditions:
This prime factorization can easily be read off using the Cantor normal form as follows:
So the factorization of the Cantor normal form ordinal
into a minimal product of infinite primes and natural numbers is
where each ni should be replaced by its factorization into a non-increasing sequence of finite primes and
As discussed above, the Cantor normal form of ordinals below ε0 can be expressed in an alphabet containing only the function symbols for addition, multiplication and exponentiation, as well as constant symbols for each natural number and for ω. We can do away with the infinitely many numerals by using just the constant symbol 0 and the operation of successor, S (for example, the natural number 4 may be expressed as S(S(S(S(0))))). This describes an ordinal notation : a system for naming ordinals over a finite alphabet. This particular system of ordinal notation is called the collection of arithmetical ordinal expressions, and can express all ordinals below ε0, but cannot express ε0. There are other ordinal notations capable of capturing ordinals well past ε0, but because there are only countably many finite-length strings over any finite alphabet, for any given ordinal notation there will be ordinals below ω1 (the first uncountable ordinal) that are not expressible. Such ordinals are known as large countable ordinals.
The operations of addition, multiplication and exponentiation are all examples of primitive recursive ordinal functions, and more general primitive recursive ordinal functions can be used to describe larger ordinals.
The natural sum and natural product operations on ordinals were defined in 1906 by Gerhard Hessenberg, and are sometimes called the Hessenberg sum (or product) ( Sierpiński 1958 ). The natural sum of α and β is often denoted by α ⊕ β or α # β, and the natural product by α ⊗ β or α ⨳ β.
The natural sum and product are defined as follows. Let and be in Cantor normal form (i.e. and ). Let be the exponents sorted in nonincreasing order. Then is defined as The natural product of and is defined as For example, suppose and . Then , whereas . And , whereas .
The natural sum and product are commutative and associative, and natural product distributes over natural sum. The operations are also monotonic, in the sense that if then ; if then ; and if and then .
We have .
We always have and . If both and then . If both and then .
Natural sum and product are not continuous in the right argument, since, for example , and not ; and , and not .
The natural sum and product are the same as the addition and multiplication (restricted to ordinals) of John Conway's field of surreal numbers.
The natural operations come up in the theory of well partial orders; given two well partial orders and , of types (maximum linearizations) and , the type of the disjoint union is , while the type of the direct product is . [2] One may take this relation as a definition of the natural operations by choosing S and T to be ordinals α and β; so α ⊕ β is the maximum order type of a total order extending the disjoint union (as a partial order) of α and β; while α ⊗ β is the maximum order type of a total order extending the direct product (as a partial order) of α and β. [3] A useful application of this is when α and β are both subsets of some larger total order; then their union has order type at most α ⊕ β. If they are both subsets of some ordered abelian group, then their sum has order type at most α ⊗ β.
We can also define the natural sum α ⊕ β by simultaneous transfinite recursion on α and β, as the smallest ordinal strictly greater than the natural sum of α and γ for all γ < β and of γ and β for all γ < α. [4] Similarly, we can define the natural product α ⊗ β by simultaneous transfinite recursion on α and β, as the smallest ordinal γ such that (α ⊗ δ) ⊕ (ε ⊗ β) < γ ⊕ (ε ⊗ δ) for all ε < α and δ < β. [4] Also, see the article on surreal numbers for the definition of natural multiplication in that context; however, it uses surreal subtraction, which is not defined on ordinals.
The natural sum is associative and commutative. It is always greater or equal to the usual sum, but it may be strictly greater. For example, the natural sum of ω and 1 is ω + 1 (the usual sum), but this is also the natural sum of 1 and ω. The natural product is associative and commutative and distributes over the natural sum. The natural product is always greater or equal to the usual product, but it may be strictly greater. For example, the natural product of ω and 2 is ω · 2 (the usual product), but this is also the natural product of 2 and ω.
Under natural addition, the ordinals can be identified with the elements of the free commutative monoid generated by the gamma numbers ωα. Under natural addition and multiplication, the ordinals can be identified with the elements of the free commutative semiring generated by the delta numbers ωωα. The ordinals do not have unique factorization into primes under the natural product. While the full polynomial ring does have unique factorization, the subset of polynomials with non-negative coefficients does not: for example, if x is any delta number, then
has two incompatible expressions as a natural product of polynomials with non-negative coefficients that cannot be decomposed further.
There are arithmetic operations on ordinals by virtue of the one-to-one correspondence between ordinals and nimbers. Three common operations on nimbers are nimber addition, nimber multiplication, and minimum excludance (mex). Nimber addition is a generalization of the bitwise exclusive or operation on natural numbers. The mex of a set of ordinals is the smallest ordinal not present in the set.
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
In mathematics, the nimbers, also called Grundy numbers, are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.
In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β < γ < λ. Every ordinal number is either zero, or a successor ordinal, or a limit ordinal.
An infinitary logic is a logic that allows infinitely long statements and/or infinitely long proofs. The concept was introduced by Zermelo in the 1930s.
In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation
In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.
In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).
In mathematics, particularly set theory, non-recursive ordinals are large countable ordinals greater than all the recursive ordinals, and therefore can not be expressed using recursive ordinal notations.
In mathematics, the Veblen functions are a hierarchy of normal functions, introduced by Oswald Veblen in Veblen (1908). If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α. These functions are all normal.
In mathematical logic and set theory, an ordinal collapsing function is a technique for defining certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals, and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals.
In set theory, a branch of mathematics, an additively indecomposable ordinalα is any ordinal number that is not 0 such that for any , we have Additively indecomposable ordinals were named the gamma numbers by Cantor,p.20 and are also called additive principal numbers. The class of additively indecomposable ordinals may be denoted , from the German "Hauptzahl". The additively indecomposable ordinals are precisely those ordinals of the form for some ordinal .
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.
In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by Hilbert (1909) in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later Weyl (1940) found a direct approach using his method of orthogonal projection, a precursor of the modern theory of elliptic differential operators and Sobolev spaces. These techniques were originally applied to prove the uniformization theorem and its generalization to planar Riemann surfaces. Later they supplied the analytic foundations for the harmonic integrals of Hodge (1941). This article covers general results on differential forms on a Riemann surface that do not rely on any choice of Riemannian structure.
In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature.
Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.
This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.
In mathematics, Rathjen's psi function is an ordinal collapsing function developed by Michael Rathjen. It collapses weakly Mahlo cardinals to generate large countable ordinals. A weakly Mahlo cardinal is a cardinal such that the set of regular cardinals below is closed under . Rathjen uses this to diagonalise over the weakly inaccessible hierarchy.
In complex geometry, the lemma is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .