Map-coloring games

Last updated
A trichrome map-coloring game in progress, on a map of the United States. On their turn, a player may choose any of the three colors to shade an unshaded state, so long as it would not share a color with a bordering state. Three states have become unshadeable, being surrounded by all three colors. Map coloring game.png
A trichrome map-coloring game in progress, on a map of the United States. On their turn, a player may choose any of the three colors to shade an unshaded state, so long as it would not share a color with a bordering state. Three states have become unshadeable, being surrounded by all three colors.

Several map-coloring games are studied in combinatorial game theory. The general idea is that we are given a map with regions drawn in but with not all the regions colored. Two players, Left and Right, take turns coloring in one uncolored region per turn, subject to various constraints, as in the map-coloring problem. The move constraints and the winning condition are features of the particular game.

Contents

Some players find it easier to color vertices of the dual graph, as in the Four color theorem. In this method of play, the regions are represented by small circles, and the circles for neighboring regions are linked by line segments or curves. The advantages of this method are that only a small area need be marked on a turn, and that the representation usually takes up less space on the paper or screen. The first advantage is less important when playing with a computer interface instead of pencil and paper. It is also possible to play with Go stones or Checkers.

Move constraints

An inherent constraint in each game is the set of colors available to the players in coloring regions. If Left and Right have the same colors available to them, the game is impartial; otherwise the game is partisan. The set of colors could also depend on the state of the game; for instance it could be required that the color used be different from the color used on the previous move.

The map-based constraints on a move are usually based on the region to be colored and its neighbors, whereas in the map-coloring problem, regions are considered to be neighbors when they meet along a boundary longer than a single point. The classical map-coloring problem requires that no two neighboring regions be given the same color. The classical move constraint enforces this by prohibiting coloring a region with the same color as one of its neighbor. The anticlassical constraint prohibits coloring a region with a color that differs from the color of one of its neighbors.

Another kind of constraint is entailment, in which each move after the first must color a neighbor of the region colored on the previous move. Anti-entailment is another possible constraint.

Other sorts of constraints are possible, such as requiring regions that are neighbors of neighbors to use different or identical colors. This concept can be considered as applying to regions at graph distance two, and can be generalized to greater distances.

Winning conditions

The winner is usually the last player to move. This is called the normal play convention. The misère play convention considers the last player to move to lose the game. There are other possible winning and losing conditions possible, such as counting territory, as in Go.

Monochrome and variants

These games, which appeared in (Silverman, 1971), all use the classical move constraint. In the impartial game "Monochrome" there is only one color available, so every move removes the colored region and its neighbors from play. In "Bichrome" both players have a choice of two colors, subject to the classical condition. Both players choose from the same two colors, so the game is impartial. "Trichrome" extends this to three colors to the players. The condition can be extended to any fixed number of colors, yielding further games. As Silverman mentions, although the Four color theorem shows that any planar map can be colored with four colors, it does not apply to maps in which some of the colors have been filled in, so adding more than four colors may have an effect on the games.

Col and Snort

A game of Col ColAndSnortGraph C end.png
A game of Col

In "Col" there are two colors subject to the classical constraint, but Left is only allowed to color regions B"l"ue, while Right is only allowed to color them "R"ed. Thus this is a partisan game, because different moves become available to Left and Right in the course of play.

"Snort" uses a similar partisan assignment of two colors, but with the anticlassical constraint: neighboring regions are not allowed to be given different colors. Coloring the regions is explained as assigning fields to bulls and cows, where neighboring fields may not contain cattle of the opposite sex, lest they be distracted from their grazing.

These games were presented and analyzed in (Conway, 1976). The names are mnemonic for the difference in constraints (classical map coloring versus animal noises), but Conway also attributes them to his colleagues Colin Vout and Simon Norton.

Other games

The impartial game "Contact" (Silverman, 1971) uses a single color with the entailment constraint: all moves after the first color a neighbor of the most recently colored region. Silverman also provides an example of "Misère Contact".

The concept of a map-coloring game may be extended to cover games such as Angels and Devils, where the rules for coloring are somewhat different in flavor.

Related Research Articles

<span class="mw-page-title-main">Four color theorem</span> Statement in mathematics

In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubters remain.

<span class="mw-page-title-main">Nim</span> Game of strategy

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct heaps or piles. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap or pile. Depending on the version being played, the goal of the game is either to avoid taking the last object or to take the last object.

Sprouts is a paper-and-pencil game which can be analyzed for its mathematical properties. It was invented by mathematicians John Horton Conway and Michael S. Paterson at Cambridge University in the early 1960s. The setup is even simpler than the popular Dots and Boxes game, but game-play develops much more artistically and organically.

In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players.

<span class="mw-page-title-main">Combinatorial game theory</span> Branch of game theory about two-player sequential games with perfect information

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

Col is a pencil and paper game, specifically a map-coloring game, involving the shading of areas in a line drawing according to the rules of graph coloring. With each move, the graph must remain proper, and a player who cannot make a legal move loses. The game was described and analysed by John Conway, who attributed it to Colin Vout, in On Numbers and Games.

<span class="mw-page-title-main">Hackenbush</span> Mathematical pen-and-paper game

Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints and to a "ground" line.

<span class="mw-page-title-main">Five color theorem</span>

The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of the world, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color.

In mathematics, the mex of a subset of a well-ordered set is the smallest value from the whole set that does not belong to the subset. That is, it is the minimum value of the complement set. The name "mex" is shorthand for "minimum excluded" value.

In the mathematics of combinatorial games, the sum or disjunctive sum of two games is a game in which the two games are played in parallel, with each player being allowed to move in just one of the games per turn. The sum game finishes when there are no moves left in either of the two parallel games, at which point the last player to move wins. This operation may be extended to disjunctive sums of any number of games, again by playing the games in parallel and moving in exactly one of the games per turn. It is the fundamental operation that is used in the Sprague–Grundy theorem for impartial games and which led to the field of combinatorial game theory for partisan games.

<span class="mw-page-title-main">Kayles</span> Mathematical game

Kayles is a simple impartial game in combinatorial game theory, invented by Henry Dudeney in 1908. Given a row of imagined bowling pins, players take turns to knock out either one pin, or two adjacent pins, until all the pins are gone. Using the notation of octal games, Kayles is denoted 0.77.

The octal games are a class of two-player games that involve removing tokens from heaps of tokens. They have been studied in combinatorial game theory as a generalization of Nim, Kayles, and similar games.

<span class="mw-page-title-main">Greedy coloring</span> One-by-one assignment of colors to graph vertices

In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but they do not, in general, use the minimum number of colors possible.

<span class="mw-page-title-main">Cram (game)</span>

Cram is a mathematical game played on a sheet of graph paper. It is the impartial version of Domineering and the only difference in the rules is that players may place their dominoes in either orientation, but it results in a very different game. It has been called by many names, including "plugg" by Geoffrey Mott-Smith, and "dots-and-pairs". Cram was popularized by Martin Gardner in Scientific American.

In the mathematical theory of games, genus theory in impartial games is a theory by which some games played under the misère play convention can be analysed, to predict the outcome class of games.

<span class="mw-page-title-main">Errera graph</span>

In the mathematical field of graph theory, the Errera graph is a graph with 17 vertices and 45 edges. Alfred Errera published it in 1921 as a counterexample to Kempe's erroneous proof of the four color theorem; it was named after Errera by Hutchinson & Wagon (1998).

In combinatorial game theory, a branch of mathematics, a hot game is one in which each player can improve their position by making the next move.

OptimJ is an extension for Java with language support for writing optimization models and abstractions for bulk data processing. The extensions and the proprietary product implementing the extensions were developed by Ateji which went out of business in September 2011. OptimJ aims at providing a clear and concise algebraic notation for optimization modeling, removing compatibility barriers between optimization modeling and application programming tools, and bringing software engineering techniques such as object-orientation and modern IDE support to optimization experts.

The Earth–Moon problem is an unsolved problem on graph coloring in mathematics. It is an extension of the planar map coloring problem, and was posed by Gerhard Ringel in 1959. In mathematical terms, it seeks the chromatic number of biplanar graphs. It is known that this number is at least 9 and at most 12.

References