Partisan game

Last updated

In combinatorial game theory, a game is partisan (sometimes partizan) if it is not impartial. That is, some moves are available to one player and not to the other. [1]

Most games are partisan. For example, in chess, only one player can move the white pieces. More strongly, when analyzed using combinatorial game theory, many chess positions have values that cannot be expressed as the value of an impartial game, for instance when one side has a number of extra tempos that can be used to put the other side into zugzwang. [2]

Partisan games are more difficult to analyze than impartial games, as the Sprague–Grundy theorem does not apply. [3] However, the application of combinatorial game theory to partisan games allows the significance of numbers as games to be seen, in a way that is not possible with impartial games. [4]

Related Research Articles

Nim

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct heaps or piles. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap or pile. Depending on the version being played, the goal of the game is either to avoid taking the last object or to take the last object.

In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim.

In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players.

In mathematics, the nimbers, also called Grundy numbers, are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.

Winning Ways for Your Mathematical Plays by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy is a compendium of information on mathematical games. It was first published in 1982 in two volumes.

Combinatorial game theory

Combinatorial game theory (CGT) is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. CGT has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

In combinatorial game theory, star, written as or , is the value given to the game where both players have only the option of moving to the zero game. Star may also be denoted as the surreal form {0|0}. This game is an unconditional first-player win.

In combinatorial game theory, the zero game is the game where neither player has any legal options. Therefore, under the normal play convention, the first player automatically loses, and it is a second-player win. The zero game has a Sprague–Grundy value of zero. The combinatorial notation of the zero game is: { | }.

Col is a pencil and paper game, specifically a map-coloring game, involving the shading of areas in a line drawing according to the rules of Graph coloring. With each move, the graph must remain proper, and a player who cannot make a legal move loses. The game was described and analysed by John Conway, who attributed it to Colin Vout, in On Numbers and Games.

Richard K. Guy British mathematician

Richard Kenneth Guy was a British mathematician. He was a professor in the Department of Mathematics at the University of Calgary. He is known for his work in number theory, geometry, recreational mathematics, combinatorics, and graph theory. He is best known for co-authorship of Winning Ways for your Mathematical Plays and authorship of Unsolved Problems in Number Theory. He published more than 300 scholarly articles. Guy proposed the partially tongue-in-cheek "strong law of small numbers", which says there are not enough small integers available for the many tasks assigned to them – thus explaining many coincidences and patterns found among numerous cultures. For this paper he received the MAA Lester R. Ford Award.

Hackenbush

Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints and to a "ground" line.

In mathematics, the mex of a subset of a well-ordered set is the smallest value from the whole set that does not belong to the subset. That is, it is the minimum value of the complement set. The name "mex" is shorthand for "minimum excluded" value.

In the mathematics of combinatorial games, the sum or disjunctive sum of two games is a game in which the two games are played in parallel, with each player being allowed to move in just one of the games per turn. The sum game finishes when there are no moves left in either of the two parallel games, at which point the last player to move wins. This operation may be extended to disjunctive sums of any number of games, again by playing the games in parallel and moving in exactly one of the games per turn. It is the fundamental operation that is used in the Sprague–Grundy theorem for impartial games and which led to the field of combinatorial game theory for partisan games.

Kayles

Kayles is a simple impartial game in combinatorial game theory, invented by Henry Dudeney in 1908. Given a row of imagined bowling pins, players take turns to knock out either one pin, or two adjacent pins, until all the pins are gone. Using the notation of octal games, Kayles is denoted 0.77.

The octal games are a class of two-player games that involve removing tokens from heaps of tokens. They have been studied in combinatorial game theory as a generalization of Nim, Kayles, and similar games.

In the mathematical theory of games, genus theory in impartial games is a theory by which some games played under the misère play convention can be analysed, to predict the outcome class of games.

In combinatorial game theory, a branch of mathematics, a hot game is one in which each player can improve their position by making the next move.

Blockbusting is a solved combinatorial game introduced in 1987 by Elwyn Berlekamp illustrating a generalisation of overheating.

In combinatorial game theory, cooling, heating, and overheating are operations on hot games to make them more amenable to the traditional methods of the theory, which was originally devised for cold games in which the winner is the last player to have a legal move. Overheating was generalised by Elwyn Berlekamp for the analysis of Blockbusting. Chilling and warming are variants used in the analysis of the endgame of Go.

In combinatorial game theory, a subtraction game is an abstract strategy game whose state can be represented by a natural number or vector of numbers and in which the allowed moves reduce these numbers. Often, the moves of the game allow any number to be reduced by subtracting a value from a specified subtraction set, and different subtraction games vary in their subtraction sets. These games also vary in whether the last player to move wins or loses (misère). Another winning convention that has also been used is that a player who moves to a position with all numbers zero wins, but that any other position with no moves possible is a draw.

References

  1. Berlekamp, Elwyn R.; Conway, John H.; Guy, Richard K. (1982), Winning ways for your mathematical plays, Volume 1: Games in general, Academic Press, p. 17. Berlekamp et al. use the alternative spelling "partizan".
  2. Elkies, Noam D. (1996), "On numbers and endgames: combinatorial game theory in chess endgames", Games of no chance (Berkeley, CA, 1994), Math. Sci. Res. Inst. Publ., 29, Cambridge: Cambridge Univ. Press, pp. 135–150, MR   1427963 .
  3. That is, not every position in a partisan game can have a nimber as its value, or else the game would be impartial. However, some nimbers can still occur as the values of game positions; see e.g. dos Santos, Carlos Pereira (2011), "Embedding processes in combinatorial game theory", Discrete Applied Mathematics, 159 (8): 675–682, doi: 10.1016/j.dam.2010.11.019 , MR   2782625 .
  4. Conway, J. H. (1976), On numbers and games, Academic Press.