Impartial game

Last updated

In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players.

Contents

Impartial games include Nim, Sprouts, Kayles, Quarto, Cram, Chomp, Subtract a square, Notakto, and poset games. Go and chess are not impartial, as each player can only place or move pieces of their own color. Games such as poker, dice or dominos are not impartial games as they rely on chance.

Impartial games can be analyzed using the Sprague–Grundy theorem, stating that every impartial game under the normal play convention is equivalent to a nimber. The representation of this nimber can change from game to game, but every possible state of any variation of an impartial game board should be able to have some nimber value. For example, several nim heaps in the game nim can be calculated, then summed using nimber addition, to give a nimber value for the game.

A game that is not impartial is called a partisan game, though some partisan games can still be evaluated using nimbers such as Domineering. [1] Domineering would not be classified as an impartial game as players use differently acting pieces, one player with vertical dominoes, one with horizontal ones, thereby breaking the rule that each player must be able to act using the same operations.

Requirements

All impartial games must meet the following conditions:

Related Research Articles

<span class="mw-page-title-main">Dots and boxes</span> 2 player paper and pencil game

Dots and boxes is a pencil-and-paper game for two players. It was first published in the 19th century by French mathematician Édouard Lucas, who called it la pipopipette. It has gone by many other names, including the dots and dashes, game of dots, dot to dot grid, boxes, and pigs in a pen.

<span class="mw-page-title-main">Nim</span> Game of strategy

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct heaps or piles. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap or pile. Depending on the version being played, the goal of the game is either to avoid taking the last object or to take the last object.

In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim.

In mathematics, the nimbers, also called Grundy numbers, are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.

Winning Ways for Your Mathematical Plays by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy is a compendium of information on mathematical games. It was first published in 1982 in two volumes.

<span class="mw-page-title-main">Combinatorial game theory</span> Branch of game theory about two-player sequential games with perfect information

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

In combinatorial game theory, a game is partisan if it is not impartial. That is, some moves are available to one player and not to the other.

In combinatorial game theory, the zero game is the game where neither player has any legal options. Therefore, under the normal play convention, the first player automatically loses, and it is a second-player win. The zero game has a Sprague–Grundy value of zero. The combinatorial notation of the zero game is: { | }.

<span class="mw-page-title-main">Elwyn Berlekamp</span> American mathematician (born 1940)

Elwyn Ralph Berlekamp was a professor of mathematics and computer science at the University of California, Berkeley. Berlekamp was widely known for his work in computer science, coding theory and combinatorial game theory.

Col is a pencil and paper game, specifically a map-coloring game, involving the shading of areas in a line drawing according to the rules of graph coloring. With each move, the graph must remain proper, and a player who cannot make a legal move loses. The game was described and analysed by John Conway, who attributed it to Colin Vout, in On Numbers and Games.

<span class="mw-page-title-main">Hackenbush</span> Mathematical pen-and-paper game

Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints and to a "ground" line.

<span class="mw-page-title-main">Dodgem</span> Abstract strategy game

Dodgem is a simple abstract strategy game invented by Colin Vout in 1972 while he was a mathematics student at the University of Cambridge as described in the book Winning Ways. It is played on an n×n board with n-1 cars for each player—two cars each on a 3×3 board is enough for an interesting game, but larger sizes are also possible.

The octal games are a class of two-player games that involve removing tokens from heaps of tokens. They have been studied in combinatorial game theory as a generalization of Nim, Kayles, and similar games.

<span class="mw-page-title-main">Cram (game)</span>

Cram is a mathematical game played on a sheet of graph paper. It is the impartial version of Domineering and the only difference in the rules is that players may place their dominoes in either orientation, but it results in a very different game. It has been called by many names, including "plugg" by Geoffrey Mott-Smith, and "dots-and-pairs". Cram was popularized by Martin Gardner in Scientific American.

In the mathematical theory of games, genus theory in impartial games is a theory by which some games played under the misère play convention can be analysed, to predict the outcome class of games.

In combinatorial game theory, a branch of mathematics, a hot game is one in which each player can improve their position by making the next move.

Treblecross is a degenerate tic-tac toe variant. The game is an octal game, played on a one-dimensional board and both players play using the same piece. Each player on their turn plays a piece in an unoccupied space. The game is won if a player on their turn makes a line of three pieces in a row.

Blockbusting is a solved combinatorial game introduced in 1987 by Elwyn Berlekamp illustrating a generalisation of overheating.

In combinatorial game theory, cooling, heating, and overheating are operations on hot games to make them more amenable to the traditional methods of the theory, which was originally devised for cold games in which the winner is the last player to have a legal move. Overheating was generalised by Elwyn Berlekamp for the analysis of Blockbusting. Chilling and warming are variants used in the analysis of the endgame of Go.

In combinatorial game theory, a subtraction game is an abstract strategy game whose state can be represented by a natural number or vector of numbers and in which the allowed moves reduce these numbers. Often, the moves of the game allow any number to be reduced by subtracting a value from a specified subtraction set, and different subtraction games vary in their subtraction sets. These games also vary in whether the last player to move wins or loses. Another winning convention that has also been used is that a player who moves to a position with all numbers zero wins, but that any other position with no moves possible is a draw.

References

  1. Advances in computer games : 14th International Conference, ACG 2015, Leiden, the Netherlands, July 1-3, 2015, Revised selected papers. Herik, Jaap van den,, Plaat, Aske,, Kosters, Walter. Cham. 24 December 2015. ISBN   978-3319279923. OCLC   933627646.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  2. Ferguson, Thomas S. (Fall 2000). "Game Theory" (PDF).

Further reading