Later-no-harm criterion

Last updated
Voting system
NameComply?
Plurality Yes [note 1]
Two-round system Yes
Partisan primary Yes
Instant-runoff voting Yes
Minimax Opposition Yes
DSCYes
Anti-plurality No[ citation needed ]
Approval N/A
Borda No
Dodgson No
Copeland No
Kemeny–Young No
Ranked Pairs No
Schulze No
Score No
Majority judgment No

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose. It is a common property in the plurality-rule family of voting systems.

Contents

For example, say a group of voters ranks Alice 2nd and Bob 6th, and Alice wins the election. In the next election, Bob focuses on expanding his appeal with this group of voters, but does not manage to defeat Alice—Bob's rating increases from 6th-place to 3rd. Later-no-harm says that this increased support from Alice's voters should not allow Bob to win. [1]

Later-no-harm may be confused as implying center squeeze, since later-no-harm is a defining characteristic of first-preference plurality (FPP) and instant-runoff voting (IRV), and descending solid coalitions (DSC), systems that have similar mechanics that are based on first preference counting. These systems pass later-no-harm compliance by making sure the results either do not depend on lower preferences at all (plurality) or only depend on them if all higher preferences have been eliminated (IRV and DSC), and thus exhibit a center squeeze effect. [2] [3] However, this does not mean that methods that pass later-no-harm must be vulnerable to center squeezes. The properties are distinct, as Minimax opposition also passes later-no-harm.

Later-no-harm is also often confused with immunity to a kind of strategic voting called strategic truncation or bullet voting. [4] Satisfying later-no-harm does not provide immunity to such strategies. Systems like instant runoff that pass later-no-harm but fail monotonicity still incentivize truncation or bullet voting in some situations. [5] [6] [7] :401

Later-no-harm methods

The plurality vote, two-round system, instant-runoff voting, and descending solid coalitions satisfy the later-no-harm criterion. First-preference plurality satisfies later-no-harm trivially, by ignoring every preference after the first. [1]

Non-LNH methods

Nearly all voting methods other than first-past-the-post do not pass LNH, including score voting, highest medians, Borda count, and all Condorcet methods. The Condorcet criterion is incompatible with later-no-harm (assuming the resolvability criterion, i.e. any tie can be removed by a single voter changing their rating). [1]

Bloc voting, which allows a voter to select multiple candidates, does not satisfy later-no-harm when used to fill two or more seats in a single district, although the single non-transferable vote does.

Examples

Anti-plurality

Anti-plurality elects the candidate the fewest voters rank last when submitting a complete ranking of the candidates.

Later-No-Harm can be considered not applicable to Anti-Plurality if the method is assumed to not accept truncated preference listings from the voter. On the other hand, Later-No-Harm can be applied to Anti-Plurality if the method is assumed to apportion the last place vote among unlisted candidates equally, as shown in the example below.

Borda count

Copeland

Schulze method

Criticism

Douglas Woodall writes:

[U]nder STV the later preferences on a ballot are not even considered until the fates of all candidates of earlier preference have been decided. Thus a voter can be certain that adding extra preferences to his or her preference listing can neither help nor harm any candidate already listed. Supporters of STV usually regard this as a very important property, although it has to be said that not everyone agrees; the property has been described (by Michael Dummett, in a letter to Robert Newland) as "quite unreasonable", and (by an anonymous referee) as "unpalatable". [8]

See also

Notes

  1. Plurality voting can be thought of as a ranked voting system that disregards preferences after the first; because all preferences other than the first are unimportant, plurality passes later-no-harm as traditionally defined.

Bibliography


Related Research Articles

<span class="mw-page-title-main">Two-round system</span> Voting system

The two-round system, also called ballotage, top-two runoff, or two-round plurality, is a single winner voting method. It is sometimes called plurality-runoff, although this term can also be used for other, closely-related systems such as instant-runoff voting or the exhaustive ballot. It falls under the class of plurality-based voting rules, together with instant-runoff and first-past-the-post (FPP). In a two-round system, if no candidate receives a majority of the vote in the first round, the two candidates with the most votes in the first round proceed to a second round where all other candidates are excluded. Both rounds are held under choose-one voting, where the voter marks a single favored candidate.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Coombs' method</span> Single-winner ranked-choice electoral system

Coombs' method is a ranked voting system. Like instant-runoff (IRV-RCV), Coombs' method is a sequential-loser method, where the last-place finisher according to one method is eliminated in each round. However, unlike in instant-runoff, each round has electors voting against their least-favorite candidate; the candidate ranked last by the most voters is eliminated.

<span class="mw-page-title-main">Negative responsiveness</span> Property of electoral systems

In social choice, the negative responsiveness, perversity, or additional support paradox is a pathological behavior of some voting rules, where a candidate loses as a result of having "too much support" from some voters, or wins because they had "too much opposition". In other words, increasing (decreasing) a candidate's ranking or rating causes that candidate to lose (win). Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">No-show paradox</span> When voting for a candidate makes them lose

In social choice, a no-show paradox is a surprising behavior in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.

<span class="mw-page-title-main">Majority winner criterion</span> Property of electoral systems

The majority criterion is a voting system criterion applicable to voting rules over ordinal preferences required that if only one candidate is ranked first by over 50% of voters, that candidate must win.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

<span class="mw-page-title-main">Bullet voting</span> Vote supporting only a single candidate

Bullet, single-shot, or plump voting is when a voter supports only a single candidate, typically to show strong support for a single favorite.

Woodall'splurality criterion is a voting criterion for ranked voting. It is stated as follows:

<span class="mw-page-title-main">Schulze STV</span> Proportional-representation ranked voting system

Schulze STV is a proposed multi-winner ranked voting system designed to achieve proportional representation. It was invented by Markus Schulze, who developed the Schulze method for resolving ties using a Condorcet method. Schulze STV is similar to CPO-STV in that it compares possible winning candidate pairs and selects the Condorcet winner. It is named in analogy to the single transferable vote (STV), but only shares its aim of proportional representation, and is otherwise based on unrelated principles.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV) is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoffs with only one vote. In each round, the candidate with the fewest votes counting towards them is eliminated, and the votes are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system.

<span class="mw-page-title-main">2009 Burlington mayoral election</span> American municipal election in Vermont

The 2009 Burlington mayoral election was the second mayoral election since the city's 2005 change to instant-runoff voting (IRV), also known as ranked-choice voting (RCV), after the 2006 mayoral election. In the 2009 election, incumbent Burlington mayor won reelection as a member of the Vermont Progressive Party, defeating Kurt Wright in the final round with 48% of the vote.

<span class="mw-page-title-main">Electoral system</span> Method by which voters make a choice between options

An electoral or voting system is a set of rules used to determine the results of an election. Electoral systems are used in politics to elect governments, while non-political elections may take place in business, non-profit organisations and informal organisations. These rules govern all aspects of the voting process: when elections occur, who is allowed to vote, who can stand as a candidate, how ballots are marked and cast, how the ballots are counted, how votes translate into the election outcome, limits on campaign spending, and other factors that can affect the result. Political electoral systems are defined by constitutions and electoral laws, are typically conducted by election commissions, and can use multiple types of elections for different offices.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties. In instant-runoff voting (IRV) and the single transferable vote system (STV), lower preferences are used as contingencies and are only applied when all higher-ranked preferences on a ballot have been eliminated or when one of the higher ranked preferences has been elected and surplus votes need to be transferred.

There are a number of different criteria which can be used for voting systems in an election, including the following

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

Homogeneity is a common property for voting systems. The property is satisfied if, in any election, the result depends only on the proportion of ballots of each possible type. That is, if every ballot is replicated the same number of times, then the result should not change.

<span class="mw-page-title-main">STAR voting</span> Single-winner electoral system

STAR voting is an electoral system for single-seat elections. The name stands for "Score Then Automatic Runoff", referring to the fact that this system is a combination of score voting, to pick two finalists with the highest total scores, followed by an "automatic runoff" in which the finalist who is preferred on more ballots wins. It is a type of cardinal voting electoral system.

<span class="mw-page-title-main">Center squeeze</span> Type of independence of irrelevant alternatives violation

Center squeeze is a kind of independence of irrelevant alternatives violation seen in a number of election rules, such as two-round and instant runoff, for example. In a center squeeze, the Condorcet winner is eliminated before they have the chance to face any of the other candidates in a one-on-one race. The term can also refer to tendency of such rules to encourage polarization among elected officials.

References

  1. 1 2 3 Douglas Woodall (1997): Monotonicity of Single-Seat Election Rules, Theorem 2 (b)
  2. Lewyn, Michael (2012). "Two Cheers for Instant Runoff Voting". 6 Phoenix L. Rev. 117. Rochester, NY. SSRN   2276015. third place Candidate C is a centrist who is in fact the second choice of Candidate A's left-wing supporters and Candidate B's right-wing supporters. ... In such a situation, Candidate C would prevail over both Candidates A ... and B ... in a one-on-one runoff election. Yet, Candidate C would not prevail under IRV because he or she finished third and thus would be the first candidate eliminated
  3. Stensholt, Eivind (2015-10-07). "What Happened in Burlington?". Discussion Papers: 13. There is a Condorcet ranking according to distance from the center, but Condorcet winner M, the most central candidate, was squeezed between the two others, got the smallest primary support, and was eliminated.
  4. The Non-majority Rule Desk (July 29, 2011). "Why Approval Voting is Unworkable in Contested Elections - FairVote". FairVote Blog. Retrieved 11 October 2016.
  5. Graham-Squire, Adam; McCune, David (2023-06-12). "An Examination of Ranked-Choice Voting in the United States, 2004–2022". Representation: 1–19. arXiv: 2301.12075 . doi:10.1080/00344893.2023.2221689. ISSN   0034-4893.
  6. Brams, Steven (1982). "The AMS nomination procedure is vulnerable to 'truncation of preferences'". Notices of the American Mathematical Society. 29. American Mathematical Society: 136–138. ISSN   0002-9920.
  7. Fishburn, Peter C.; Brams, Steven J. (1984-01-01). "Manipulability of voting by sincere truncation of preferences". Public Choice. 44 (3): 397–410. doi:10.1007/BF00119689. ISSN   1573-7101.
  8. Woodall, Douglas, Properties of Preferential Election Rules, Voting matters - Issue 3, December 1994