Ranked pairs

Last updated

Ranked Pairs (RP), also known as the Tideman method, is a tournament-style system of ranked voting first proposed by Nicolaus Tideman in 1987. [1] [2]

Contents

If there is a candidate who is preferred over the other candidates, when compared in turn with each of the others, the ranked-pairs procedure guarantees that candidate will win. Therefore, the ranked-pairs procedure complies with the Condorcet winner criterion (and as a result is considered to be a Condorcet method). [3]

Ranked pairs begins with a round-robin tournament, where the one-on-one margins of victory for each possible pair of candidates are compared to find a majority-preferred candidate; if such a candidate exists, they are immediately elected. Otherwise, if there is a Condorcet cycle—a rock-paper-scissors-like sequence A > B > C > A—the cycle is broken by dropping the "weakest" elections in the cycle, i.e. the ones that are closest to being tied. [4]

Procedure

The ranked pairs procedure is as follows:

  1. Consider each pair of candidates round-robin style, and calculate the pairwise margin of victory for each in a one-on-one matchup.
  2. Sort the pairs by the (absolute) margin of victory, going from largest to smallest.
  3. Going down the list, check whether adding each matchup would create a cycle. If it would, cross out the election; this will be the election(s) in the cycle with the smallest margin of victory (near-ties). [note 1]

At the end of this procedure, all cycles will be eliminated, leaving a unique winner who wins all of the remaining one-on-one matchups. The lack of cycles means that candidates can be ranked directly based on the matchups that have been left behind.

Example

The situation

Tennessee map for voting example.svg

Suppose that Tennessee is holding an election on the location of its capital. The population is concentrated around four major cities. All voters want the capital to be as close to them as possible. The options are:

The preferences of each region's voters are:

42% of voters
Far-West
26% of voters
Center
15% of voters
Center-East
17% of voters
Far-East
  1. Memphis
  2. Nashville
  3. Chattanooga
  4. Knoxville
  1. Nashville
  2. Chattanooga
  3. Knoxville
  4. Memphis
  1. Chattanooga
  2. Knoxville
  3. Nashville
  4. Memphis
  1. Knoxville
  2. Chattanooga
  3. Nashville
  4. Memphis

The results are tabulated as follows:

Pairwise election results
A
B
MemphisNashvilleChattanoogaKnoxville
Memphis[A] 58%

[B] 42%

[A] 58%

[B] 42%

[A] 58%

[B] 42%

Nashville[A] 42%

[B] 58%

[A] 32%

[B] 68%

[A] 32%

[B] 68%

Chattanooga[A] 42%

[B] 58%

[A] 68%

[B] 32%

[A] 17%

[B] 83%

Knoxville[A] 42%

[B] 58%

[A] 68%

[B] 32%

[A] 83%

[B] 17%

Tally

First, list every pair, and determine the winner:

PairWinner
Memphis (42%) vs. Nashville (58%)Nashville 58%
Memphis (42%) vs. Chattanooga (58%)Chattanooga 58%
Memphis (42%) vs. Knoxville (58%)Knoxville 58%
Nashville (68%) vs. Chattanooga (32%)Nashville 68%
Nashville (68%) vs. Knoxville (32%)Nashville 68%
Chattanooga (83%) vs. Knoxville (17%)Chattanooga 83%

The votes are then sorted. The largest majority is "Chattanooga over Knoxville"; 83% of the voters prefer Chattanooga. Thus, the pairs from above would be sorted this way:

PairWinner
Chattanooga (83%) vs. Knoxville (17%)Chattanooga 83%
Nashville (68%) vs. Knoxville (32%)Nashville 68%
Nashville (68%) vs. Chattanooga (32%)Nashville 68%
Memphis (42%) vs. Nashville (58%)Nashville 58%
Memphis (42%) vs. Chattanooga (58%)Chattanooga 58%
Memphis (42%) vs. Knoxville (58%)Knoxville 58%

Lock

The pairs are then locked in order, skipping any pairs that would create a cycle:

In this case, no cycles are created by any of the pairs, so every single one is locked in.

Every "lock in" would add another arrow to the graph showing the relationship between the candidates. Here is the final graph (where arrows point away from the winner).

Tennessee-vote.svg

In this example, Nashville is the winner using the ranked-pairs procedure. Nashville is followed by Chattanooga, Knoxville, and Memphis in second, third, and fourth places respectively.

Summary

In the example election, the winner is Nashville. This would be true for any Condorcet method.

Under first-past-the-post and some other systems, Memphis would have won the election by having the most people, even though Nashville won every simulated pairwise election outright. Using instant-runoff voting in this example would result in Knoxville winning even though more people preferred Nashville over Knoxville.

Criteria

Of the formal voting criteria, the ranked pairs method passes the majority criterion, the monotonicity criterion, the Smith criterion (which implies the Condorcet criterion), the Condorcet loser criterion, and the independence of clones criterion. Ranked pairs fails the consistency criterion and the participation criterion. While ranked pairs is not fully independent of irrelevant alternatives, it still satisfies local independence of irrelevant alternatives and independence of Smith-dominated alternatives, meaning it is likely to roughly satisfy IIA "in practice."

Independence of irrelevant alternatives

Ranked pairs fails independence of irrelevant alternatives, like all other ranked voting systems. However, the method adheres to a less strict property, sometimes called independence of Smith-dominated alternatives (ISDA). It says that if one candidate (X) wins an election, and a new alternative (Y) is added, X will win the election if Y is not in the Smith set. ISDA implies the Condorcet criterion.

Comparison table

The following table compares ranked pairs with other single-winner election methods:

Comparison of single-winner voting systems
Criterion


Method
Majority winner Majority loser Mutual majority Condorcet winner [Tn 1] Condorcet loser Smith [Tn 1] Smith-IIA [Tn 1] IIA/LIIA [Tn 1] Clone­proof Mono­tone Participation Later-no-harm [Tn 1] Later-no-help [Tn 1] No favorite betrayal [Tn 1] Ballot

type

First-past-the-post voting YesNoNoNoNoNoNoNoNoYesYesYesYesNoSingle mark
Anti-plurality NoYesNoNoNoNoNoNoNoYesYesNoNoYesSingle mark
Two round system YesYesNoNoYesNoNoNoNoNoNoYesYesNoSingle mark
Instant-runoff YesYesYesNoYesNoNoNoYesNoNoYesYesNoRan­king
Coombs YesYesYesNoYesNoNoNoNoNoNoNoNoYesRan­king
Nanson YesYesYesYesYesYesNoNoNoNoNoNoNoNoRan­king
Baldwin YesYesYesYesYesYesNoNoNoNoNoNoNoNoRan­king
Tideman alternative YesYesYesYesYesYesYesNoYesNoNoNoNoNoRan­king
Minimax YesNoNoYes [Tn 2] NoNoNoNoNoYesNoNo [Tn 2] NoNoRan­king
Copeland YesYesYesYesYesYesYesNoNoYesNoNoNoNoRan­king
Black YesYesNoYesYesNoNoNoNoYesNoNoNoNoRan­king
Kemeny–Young YesYesYesYesYesYesYesLIIA OnlyNoYesNoNoNoNoRan­king
Ranked pairs YesYesYesYesYesYesYesLIIA OnlyYesYesNo [Tn 3] NoNoNoRan­king
Schulze YesYesYesYesYesYesYesNoYesYesNo [Tn 3] NoNoNoRan­king
Borda NoYesNoNoYesNoNoNoNoYesYesNoYesNoRan­king
Bucklin YesYesYesNoNoNoNoNoNoYesNoNoYesNoRan­king
Approval YesNoNoNoNoNoNoYes [Tn 4] YesYesYesNoYesYesAppr­ovals
Majority Judgement NoNo [Tn 5] No [Tn 6] NoNoNoNoYes [Tn 4] YesYesNo [Tn 3] NoYesYesScores
Score NoNoNoNoNoNoNoYes [Tn 4] YesYesYesNoYesYesScores
STAR NoYesNoNoYesNoNoNoNoYesNoNoNoNoScores
Random ballot [Tn 7] NoNoNoNoNoNoNoYesYesYesYesYesYesYesSingle mark
Sortition [Tn 8] NoNoNoNoNoNoNoYesNoYesYesYesYesYesNone
Table Notes
  1. 1 2 3 4 5 6 7 Condorcet's criterion is incompatible with the consistency, participation, later-no-harm, later-no-help, and sincere favorite criteria.
  2. 1 2 A variant of Minimax that counts only pairwise opposition, not opposition minus support, fails the Condorcet criterion and meets later-no-harm.
  3. 1 2 3 In Highest median, Ranked Pairs, and Schulze voting, there is always a regret-free, semi-honest ballot for any voter, holding all other ballots constant and assuming they know enough about how others will vote. Under such circumstances, there is always at least one way for a voter to participate without grading any less-preferred candidate above any more-preferred one.
  4. 1 2 3 Approval voting, score voting, and majority judgment satisfy IIA if it is assumed that voters rate candidates independently using their own absolute scale. For this to hold, in some elections, some voters must use less than their full voting power despite having meaningful preferences among viable candidates.
  5. Majority Judgment may elect a candidate uniquely least-preferred by over half of voters, but it never elects the candidate uniquely bottom-rated by over half of voters.
  6. Majority Judgment fails the mutual majority criterion, but satisfies the criterion if the majority ranks the mutually favored set above a given absolute grade and all others below that grade.
  7. A randomly chosen ballot determines winner. This and closely related methods are of mathematical interest and included here to demonstrate that even unreasonable methods can pass voting method criteria.
  8. Where a winner is randomly chosen from the candidates, sortition is included to demonstrate that even non-voting methods can pass some criteria.


Notes

  1. Rather than crossing out near-ties, step 3 is sometimes described as going down the list and confirming ("locking in") the largest victories that do not create a cycle, then ignoring any victories that are not locked-in.

Related Research Articles

<span class="mw-page-title-main">Condorcet paradox</span> Self-contradiction of majority rule

In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Coombs' method</span> Single-winner ranked-choice electoral system

Coombs' method is a ranked voting system. Like instant-runoff (IRV-RCV), Coombs' method is a sequential-loser method, where the last-place finisher according to one method is eliminated in each round. However, unlike in instant-runoff, each round has electors voting against their least-favorite candidate; the candidate ranked last by the most voters is eliminated.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

<span class="mw-page-title-main">Bucklin voting</span> Class of electoral systems

Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system.

<span class="mw-page-title-main">Schulze method</span> Single-winner electoral system

The Schulze method, also known as the beatpath method, is a single winner ranked-choice voting rule developed by Markus Schulze. The Schulze method is a Condorcet completion method, which means it will elect a majority-preferred candidate if one exists. In other words, if most people rank A above B, A will defeat B. Schulze's method breaks cyclic ties by using indirect victories. The idea is that if Alice beats Bob, and Bob beats Charlie, then Alice (indirectly) beats Charlie; this kind of indirect win is called a beatpath.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">Multiple districts paradox</span> Property of electoral systems

A voting system satisfies join-consistency if combining two sets of votes, both electing A over B, always results in a combined electorate that ranks A over B. It is a stronger form of the participation criterion. Systems that fail the consistency criterion are susceptible to the multiple-district paradox, which allows for a particularly egregious kind of gerrymander: it is possible to draw boundaries in such a way that a candidate who wins the overall election fails to carry even a single electoral district.

The mutual majority criterion is a criterion for evaluating electoral systems. It is also known as the majority criterion for solid coalitions and the generalized majority criterion. This criterion requires that whenever a majority of voters prefer a group of candidates above all others, then the winner must be a candidate from that group. The mutual majority criterion may also be thought of as the single-winner case of Droop-Proportionality for Solid Coalitions.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

<span class="mw-page-title-main">Minimax Condorcet method</span> Single-winner ranked-choice voting system

In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) number of votes in their worst (minimum) matchup is declared the winner.

<span class="mw-page-title-main">Anti-plurality voting</span> Single-winner positional electoral system

Anti-plurality voting describes an electoral system in which each voter votes against a single candidate, and the candidate with the fewest votes against wins. Anti-plurality voting is an example of a positional voting method.

<span class="mw-page-title-main">Kemeny–Young method</span> Single-winner electoral system

The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.

<span class="mw-page-title-main">Independence of clones criterion</span> Property of electoral systems

In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a weak form of the independence of irrelevant alternatives (IIA) criterion that nevertheless is failed by a number of voting rules. A method that passes the criterion is said to be clone independent.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV) is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoff elections. In each round, the last-place finisher according to a plurality vote is eliminated, and the votes supporting the eliminated choice are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system.

<span class="mw-page-title-main">Majority judgment</span> Single-winner cardinal voting system

Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It is a kind of highest median rule, a cardinal voting system that elects the candidate with the highest median rating.

There are a number of different criteria which can be used for voting systems in an election, including the following

<span class="mw-page-title-main">STAR voting</span> Single-winner electoral system

STAR voting is an electoral system for single-seat elections. The name stands for "Score Then Automatic Runoff", referring to the fact that this system is a combination of score voting, to pick two finalists with the highest total scores, followed by an "automatic runoff" in which the finalist who is preferred on more ballots wins. It is a type of cardinal voting electoral system.

<span class="mw-page-title-main">Tideman alternative method</span> Single-winner electoral system family

The Tideman Alternative method, also called Alternative-Smithvoting, is a voting rule developed by Nicolaus Tideman which selects a single winner using ranked ballots. This method is Smith-efficient, making it a kind of Condorcet method, and uses the alternative vote (RCV) to resolve any cyclic ties.

<span class="mw-page-title-main">Round-robin voting</span> Voting systems using paired comparisons

Round-robin, pairedcomparison, or tournamentvoting methods, are a set of ranked voting systems that choose winners by comparing every pair of candidates one-on-one, similar to a round-robin tournament. In each paired matchup, we record the total number of voters who prefer each candidate in a beats matrix. Then, a majority-preferred (Condorcet) candidate is elected, if one exists. Otherwise, if there is a cyclic tie, the candidate "closest" to being a Condorcet winner is elected, based on the recorded beats matrix. How "closest" is defined varies by method.

References

  1. Tideman, T. N. (1987-09-01). "Independence of clones as a criterion for voting rules". Social Choice and Welfare. 4 (3): 185–206. doi:10.1007/BF00433944. ISSN   1432-217X. S2CID   122758840.
  2. Schulze, Markus (October 2003). "A New Monotonic and Clone-Independent Single-Winner Election Method". Voting matters (www.votingmatters.org.uk). 17. McDougall Trust. Archived from the original on 2020-07-11. Retrieved 2021-02-02.
  3. Munger, Charles T. (2022). "The best Condorcet-compatible election method: Ranked Pairs". Constitutional Political Economy . doi: 10.1007/s10602-022-09382-w .
  4. Munger, Charles T. (2022). "The best Condorcet-compatible election method: Ranked Pairs". Constitutional Political Economy . 34 (3): 434–444. doi: 10.1007/s10602-022-09382-w .