A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematicsportal |
The majority criterion is a winner-takes-all voting system criterion that says that, if only one candidate is ranked first by over 50% of voters, that candidate must win. [1]
Some methods that comply with this criterion include any Condorcet method, instant-runoff voting, Bucklin voting, plurality voting, and approval voting.
The criterion was originally defined only for methods based on ranked ballots, so while ranked systems such as Borda fail the criterion under any definition, its application to methods that give weight to preference strength is disputed, as is the desirability of satisfying such a criterion (see tyranny of the majority). [2] [3] [4]
The mutual majority criterion is a generalized form of the criterion meant to account for when the majority prefers multiple candidates above all others; voting methods which pass majority but fail mutual majority can encourage all but one of the majority's preferred candidates to drop out in order to ensure one of the majority-preferred candidates wins, creating a spoiler effect. [5]
By the majority criterion, a candidate C should win if a majority of voters answers affirmatively to the question "Do you (strictly) prefer C to every other candidate?"
The Condorcet criterion gives a stronger and more intuitive notion of majoritarianism (and as such is sometimes referred to as majority rule). According to it, a candidate C should win if for every other candidate Y there is a majority of voters that answers affirmatively to the question "Do you prefer C to Y?" A Condorcet system necessarily satisfies the majority criterion, but not vice versa.
A Condorcet winner C only has to defeat every other candidate "one-on-one"—in other words, when comparing C to any specific alternative. To be the majority choice of the electorate, a candidate C must be able to defeat every other candidate simultaneously—i.e. voters who are asked to choose between C and "anyone else" must pick "C" instead of any other candidate.
Equivalently, a Condorcet winner can have several different majority coalitions supporting them in each one-on-one matchup. A majority winner must instead have a single (consistent) majority that supports them across all one-on-one matchups.
In systems with absolute rating categories such as score and highest median methods, it is not clear how the majority criterion should be defined. There are three notable definitions of for a candidate A:
The first criterion is not satisfied by any common cardinal voting method. Ordinal ballots can only tell us whether A is preferred to B (not by how much A is preferred to B), and so if we only know most voters prefer A to B, it is reasonable to say the majority should win. However, with cardinal voting systems, there is more information available, as voters also state the strength of their preferences. Thus in cardinal voting systems a sufficiently-motivated minority can sometimes outweigh the voices of a majority, if they would be strongly harmed by a policy or candidate.
Approval voting trivially satisfies the majority criterion: if a majority of voters approve of A, but a majority do not approve of any other candidate, then A will have an average approval above 50%, while all other candidates will have an average approval below 50%, and A will be elected.
Any candidate receiving more than 50% of the vote will be elected by plurality.
Instant-runoff voting satisfies majority--if a candidate is rated first by 50% of the electorate, they will win in the first round.
For example 100 voters cast the following votes:
Preference | Voters |
---|---|
A>B>C | 55 |
B>C>A | 35 |
C>B>A | 10 |
A has 110 Borda points (55 × 2 + 35 × 0 + 10 × 0). B has 135 Borda points (55 × 1 + 35 × 2 + 10 × 1). C has 55 Borda points (55 × 0 + 35 × 1 + 10 × 2).
Preference | Points |
---|---|
A | 110 |
B | 135 |
C | 55 |
Candidate A is the first choice of a majority of voters but candidate B wins the election.
Any Condorcet method will automatically satisfy the majority criterion
For example 100 voters cast the following votes:
Ballot | Voters | ||
---|---|---|---|
A | B | C | |
10 | 9 | 0 | 80 |
0 | 10 | 0 | 20 |
Candidate B would win with a total of 80 × 9 + 20 × 10 = 720 + 200 = 920 rating points, versus 800 for candidate A.
Because candidate A is rated higher than candidate B by a (substantial) majority of the voters, but B is declared winner, this voting system fails to satisfy the criterion due to using additional information about the voters' opinion. Conversely, if the bloc of voters who rate A highest know they are in the majority, such as from pre-election polls, they can strategically give a maximal rating to A, a minimal rating to all others, and thereby guarantee the election of their favorite candidate. In this regard, score voting gives a majority the power to elect their favorite, but just as with approval voting, it does not force them to.
STAR voting fails majority, but satisfies the majority loser criterion.
It is controversial how to interpret the term "prefer" in the definition of the criterion. If majority support is interpreted in a relative sense, with a majority rating a preferred candidate above any other, the method does not pass, even with only two candidates. If the word "prefer" is interpreted in an absolute sense, as rating the preferred candidate with the highest available rating, then it does.
If "A is preferred" means that the voter gives a better grade to A than to every other candidate, majority judgment can fail catastrophically. Consider the case below when n is large:
# ballots | A's score | B's score |
---|---|---|
n | 100/100 | 52/100 |
1 | 50/100 | 51/100 |
n | 49/100 | 0/100 |
A is preferred by a majority, but B's median is Good and A's median is only Fair, so B would win. In fact, A can be preferred by up to (but not including) 100% of all voters, an exceptionally severe violation of the criterion.
If we define the majority criterion as requiring a voter to uniquely top-rate candidate A, then this system passes the criterion; any candidate who receives the highest grade from a majority of voters receives the highest grade (and so can only be defeated by another candidate who has majority support).
A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.
The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.
Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system.
A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.
In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.
The median voter theorem in political science and social choice theory, developed by Duncan Black, states that if voters and candidates are distributed along a one-dimensional spectrum and voters have single-peaked preferences, any voting method that is compatible with majority-rule will elect the candidate preferred by the median voter. The median voter theorem thus shows that under a realistic model of voter behavior, Arrow's theorem, which essentially suggests that ranked-choice voting systems cannot eliminate the spoiler effect, does not apply, and therefore that rational social choice is in fact possible if the election system is using a Condorcet method.
A voting system satisfies join-consistency if combining two sets of votes, both electing A over B, always results in a combined electorate that ranks A over B. It is a stronger form of the participation criterion. Systems that fail the consistency criterion are susceptible to the multiple-district paradox, which allows for a particularly egregious kind of gerrymander: it is possible to draw boundaries in such a way that a candidate who wins the overall election fails to carry even a single electoral district.
The mutual majority criterion is a criterion for evaluating electoral system. It is also known as the majority criterion for solid coalitions and the generalized majority criterion. This criterion requires that whenever a majority of voters prefer a group of candidates above all others, then the winner must be a candidate from that group. The mutual majority criterion may also be thought of as the single-winner case of Droop-Proportionality for Solid Coalitions.
The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.
In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.
In social choice theory, the best-is-worst paradox occurs when a voting rule declares the same candidate to be both the best and worst possible winner. The worst candidate can be identified by reversing each voter's ballot, then applying the voting rule to the reversed ballots find a new "anti-winner".
Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.
In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a weak form of the independence of irrelevant alternatives (IIA) criterion that nevertheless is failed by a number of voting rules. A method that passes the criterion is said to be clone independent.
The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.
Instant-runoff voting (IRV) is a winner-takes-all multi-round elimination voting system that uses ranked voting to simulate a series of runoff elections, where the last-place finisher according to a plurality vote is eliminated in each round and the votes supporting the eliminated choice are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Its purpose is to elect the candidate in single-member districts with majority support even when there are more than two candidates. IRV is most closely related to two-round runoff election.
Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.
There are a number of different criteria which can be used for voting systems in an election, including the following
The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.
A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.
Multiwinner, at-large, or committeevoting refers to electoral systems that elect several candidates at once. Such methods can be used to elect parliaments or committees.
if there is some single alternative which is ranked first by a majority of voters, we shall say there exists a majority will in favor of that alternative, according to the absolute majority (AM) criterion.
This is true even if the members of the majority are relatively indifferent among a, b and c while the members of the minority have an intense preference for b over a. So the objection can be made that plurality or majority voting allows a diffident majority to have its way against an intense minority.
Borda count is sometimes described as a consensus-based voting system, since it can sometimes choose a more broadly acceptable option over the one with majority support.