Majority loser criterion

Last updated

The majority loser criterion is a criterion to evaluate single-winner voting systems. [1] [2] [3] [4] The criterion states that if a majority of voters prefers every other candidate over a given candidate, then that candidate must not win.

Either of the Condorcet loser criterion or the mutual majority criterion implies the majority loser criterion. However, the Condorcet criterion does not imply the majority loser criterion, since the minimax method satisfies the Condorcet but not the majority loser criterion. Also, the majority criterion is logically independent from the majority loser criterion, since the plurality rule satisfies the majority but not the majority loser criterion, and the anti-plurality rule satisfies the majority loser but not the majority criterion. There is no positional scoring rule which satisfies both the majority and the majority loser criterion, [5] [6] but several non-positional rules, including many Condorcet rules, do satisfy both criteria.

Methods that comply with this criterion include Schulze, ranked pairs, Kemeny–Young, Nanson, Baldwin, Coombs, Borda, Bucklin, instant-runoff voting, contingent voting, and anti-plurality voting.

Methods that do not comply with this criterion include plurality, minimax, Sri Lankan contingent voting, supplementary voting, approval voting [ citation needed ], and score voting [ citation needed ].

See also

Related Research Articles

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, that is, a candidate preferred by more voters than any others, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner. The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

Copeland's method is a ranked voting method based on a scoring system of pairwise "wins", "losses", and "ties". The method has a long history:

In voting systems, the Smith set, named after John H. Smith, but also known as the top cycle, or as Generalized Top-Choice Assumption (GETCHA), is the smallest non-empty set of candidates in a particular election such that each member defeats every candidate outside the set in a pairwise election. The Smith set provides one standard of optimal choice for an election outcome. Voting systems that always elect a candidate from the Smith set pass the Smith criterion and are said to be 'Smith-efficient' or to satisfy the Smith criterion.

Ranked pairs or the Tideman method is an electoral system developed in 1987 by Nicolaus Tideman that selects a single winner using votes that express preferences. The ranked-pairs procedure can also be used to create a sorted list of winners.

An electoral system satisfies the Condorcet winner criterion if it always chooses the Condorcet winner when one exists. The candidate who wins a majority of the vote in every head-to-head election against each of the other candidates – that is, a candidate preferred by more voters than any others – is the Condorcet winner, although Condorcet winners do not exist in all cases. It is sometimes simply referred to as the "Condorcet criterion", though it is very different from the "Condorcet loser criterion". Any voting method conforming to the Condorcet winner criterion is known as a Condorcet method. The Condorcet winner is the person who would win a two-candidate election against each of the other candidates in a plurality vote. For a set of candidates, the Condorcet winner is always the same regardless of the voting system in question, and can be discovered by using pairwise counting on voters' ranked preferences.

The Smith criterion is a voting systems criterion defined such that it's satisfied when a voting system always elects a candidate that is in the Smith set, which is the smallest non-empty subset of the candidates such that every candidate in the subset is majority-preferred over every candidate not in the subset. The Smith set is named for mathematician John H Smith, whose version of the Condorcet criterion is actually stronger than that defined above for social welfare functions. Benjamin Ward was probably the first to write about this set, which he called the "majority set".

The participation criterion is a voting system criterion. Voting systems that fail the participation criterion are said to exhibit the no show paradox and allow a particularly unusual strategy of tactical voting: abstaining from an election can help a voter's preferred choice win. The criterion has been defined as follows:

The majority criterion is a single-winner voting system criterion, used to compare such systems. The criterion states that "if one candidate is ranked first by a majority of voters, then that candidate must win".

The mutual majority criterion is a criterion used to compare voting systems. It is also known as the majority criterion for solid coalitions and the generalized majority criterion. The criterion states that if there is a subset S of the candidates, such that more than half of the voters strictly prefer every member of S to every candidate outside of S, this majority voting sincerely, the winner must come from S. This is similar to but stricter than the majority criterion, where the requirement applies only to the case that S contains a single candidate. This is also stricter than the majority loser criterion, where the requirement applies only to the case that S contains all but one candidate. The mutual majority criterion is the single-winner case of the Droop proportionality criterion.

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

In voting systems, the Minimax Condorcet method is one of several Condorcet methods used for tabulating votes and determining a winner when using ranked voting in a single-winner election. It is sometimes referred to as the Simpson–Kramer method, and the successive reversal method.

Reversal symmetry is a voting system criterion which requires that if candidate A is the unique winner, and each voter's individual preferences are inverted, then A must not be elected. Methods that satisfy reversal symmetry include Borda count, ranked pairs, Kemeny-Young method, and Schulze method. Methods that fail include Bucklin voting, instant-runoff voting and Condorcet methods that fail the Condorcet loser criterion such as Minimax.

The plurality criterion is a voting system criterion devised by Douglas R. Woodall for ranked voting methods with incomplete ballots. It is stated as follows:

The later-no-harm criterion is a voting system criterion formulated by Douglas Woodall. Woodall defined the criterion as "[a]dding a later preference to a ballot should not harm any candidate already listed." For example, a ranked voting method in which a voter adding a 3rd preference could reduce the likelihood of their 1st preference being selected, fails later-no-harm.

In voting systems theory, the independence of clones criterion measures an election method's robustness to strategic nomination. Nicolaus Tideman was the first to formulate this criterion, which states that the winner must not change due to the addition of a non-winning candidate who is similar to a candidate already present. To be more precise, a subset of the candidates, called a set of clones, exists if no voter ranks any candidate outside the set between any candidates that are in the set. If a set of clones contains at least two candidates, the criterion requires that deleting one of the clones must not increase or decrease the winning chance of any candidate not in the set of clones.

<span class="mw-page-title-main">Ranked voting</span> Family of electoral systems

The term ranked voting, also known as preferential voting or ranked choice voting, pertains to any voting system where voters use a rank to order candidates or options—in a sequence from first, second, third, and onwards—on their ballots. Ranked voting systems vary based on the ballot marking process, how preferences are tabulated and counted, the number of seats available for election, and whether voters are allowed to rank candidates equally. An electoral system that utilizes ranked voting employs one of numerous counting methods to determine the winning candidate or candidates. Additionally, in some ranked voting systems, officials mandate voters to rank a specific number of candidates, sometimes all; while in others, voters may rank as many candidates as they desire.

Comparison of electoral systems is the result of comparative politics for electoral systems. Electoral systems are the rules for conducting elections, a main component of which is the algorithm for determining the winner from the ballots cast. This article discusses methods and results of comparing different electoral systems, both those that elect a unique candidate in a 'single-winner' election and those that elect a group of representatives in a multiwinner election.

Black's method is an election method proposed by Duncan Black in 1958 as a compromise between the Condorcet method and the Borda count. This method selects a Condorcet winner. If a Condorcet winner does not exist, then the candidate with the highest Borda score is selected.

Multiwinner voting, also called multiple-winner elections or committee voting or committee elections, is an electoral system in which multiple candidates are elected. The number of elected candidates is usually fixed in advance. For example, it can be the number of seats in a country's parliament, or the required number of members in a committee.

References

  1. Lepelley, Dominique; Merlin, Vincent (1998). "Choix social positionnel et principe majoritaire". Annales d'Économie et de Statistique (51): 29–48. doi:10.2307/20076136. JSTOR   20076136.
  2. Sertel, Murat R.; Yılmaz, Bilge (1999-09-01). "The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable". Social Choice and Welfare. 16 (4): 615–627. CiteSeerX   10.1.1.597.1421 . doi:10.1007/s003550050164. ISSN   0176-1714. S2CID   128357237.
  3. Felsenthal, Dan S; Nurmi, Hannu (2018). Voting procedures for electing a single candidate : proving their (in)vulnerability to various voting paradoxes. Cham, Switzerland: Springer. ISBN   978-3-319-74033-1.
  4. Kondratev, Aleksei Y.; Nesterov, Alexander S. (2020). "Measuring Majority Power and Veto Power of Voting Rules". Public Choice. 183 (1–2): 187–210. arXiv: 1811.06739 . doi:10.1007/s11127-019-00697-1. S2CID   53670198.
  5. Sanver, M. Remzi (2002-03-01). "Scoring rules cannot respect majority in choice and elimination simultaneously". Mathematical Social Sciences. 43 (2): 151–155. doi:10.1016/S0165-4896(01)00087-7.
  6. Woeginger, Gerhard J. (December 2003). "A note on scoring rules that respect majority in choice and elimination" (PDF). Mathematical Social Sciences. 46 (3): 347–354. doi:10.1016/S0165-4896(03)00050-7.