Majority loser criterion

Last updated

The majority loser criterion is a criterion to evaluate single-winner voting systems. [1] [2] [3] [4] The criterion states that if a majority of voters give a candidate no support, i.e. do not list that candidate on their ballot, that candidate must lose (unless no candidate is accepted by a majority of voters).

Either of the Condorcet loser criterion or the mutual majority criterion implies the majority loser criterion. However, the Condorcet criterion does not imply the majority loser criterion, since the minimax method satisfies the Condorcet but not the majority loser criterion. Also, the majority criterion is logically independent from the majority loser criterion, since the plurality rule satisfies the majority but not the majority loser criterion, and the anti-plurality rule satisfies the majority loser but not the majority criterion. There is no positional scoring rule which satisfies both the majority and the majority loser criterion, [5] [6] but several non-positional rules, including many Condorcet rules, do satisfy both. Some voting systems, like instant-runoff voting, fail the criterion if extended to handle incomplete ballots.

See also

Related Research Articles

<span class="mw-page-title-main">Approval voting</span> Single-winner electoral system

Approval voting is a single-winner electoral system in which voters mark all the candidates they support, instead of just choosing one. The candidate with the highest approval rating is elected. Approval voting is currently in use for government elections in St. Louis, Missouri, Fargo, North Dakota and in the United Nations to elect the Secretary General.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

<span class="mw-page-title-main">Smith set</span> Set preferred to any other by a majority

The Smith or Schwartz set, sometimes called the top-cycle, generalizes the idea of a Condorcet winner to cases where no such winner exists. It does so by allowing cycles of candidates to be treated jointly, as if they were a single Condorcet winner.

<span class="mw-page-title-main">Negative responsiveness paradox</span> Property of electoral systems

In social choice, the negative responsiveness, perversity, or additional support paradox is a pathological behavior of some voting rules, where a candidate loses as a result of having "too much support" from some voters, or wins because they had "too much opposition". In other words, increasing (decreasing) a candidate's ranking or rating causes that candidate to lose (win), contrary to common sense. Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.

<span class="mw-page-title-main">Majority rule</span> Decision rule that selects alternatives which have a majority

In social choice theory, the majority rule (MR) is a social choice rule which says that, when comparing two options, the option preferred by more than half of the voters should win.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">No-show paradox</span> When voting for a candidate makes them lose

In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.

<span class="mw-page-title-main">Median voter theorem</span> Theorem in political science

The median voter theorem in political science and social choice theory, developed by Duncan Black, states that if voters and candidates are distributed along a one-dimensional spectrum and voters have single-peaked preferences, any voting method that is compatible with majority-rule will elect the candidate preferred by the median voter. The median voter theorem thus shows that under a realistic model of voter behavior, Arrow's theorem, which essentially suggests that ranked-choice voting systems cannot eliminate the spoiler effect, does not apply, and therefore that rational social choice is in fact possible if the election system is using a Condorcet method.

<span class="mw-page-title-main">Majority favorite criterion</span> Property of electoral systems

The majority favorite criterion is a voting system criterion that says that, if a candidate would win more than half the vote in a first-preference plurality election, that candidate should win. Equivalently, if only one candidate is ranked first by a over 50% of voters, that candidate must win.

<span class="mw-page-title-main">Nanson's method</span> Single-winner electoral system

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV) is a winner-takes-all multi-round elimination voting system that uses ranked voting to simulate a series of runoff elections, where the last-place finisher according to a plurality vote is eliminated in each round. Its purpose is to elect the candidate in single-member districts with majority support even when there are more than two candidates. IRV is most closely related to two-round runoff election.

<span class="mw-page-title-main">Majority judgment</span> Single-winner cardinal voting system

Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It is a kind of highest median rule, a cardinal voting system that elects the candidate with the highest median rating.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.

There are a number of different criteria which can be used for voting systems in an election, including the following

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.

<span class="mw-page-title-main">Multiwinner voting</span> Process of electing more than one winner in the same election / district

Multiwinner, at-large, or committeevoting refers to electoral systems that elect several candidates at once. Such methods can be used to elect parliaments or committees.

References

  1. Lepelley, Dominique; Merlin, Vincent (1998). "Choix social positionnel et principe majoritaire". Annales d'Économie et de Statistique (51): 29–48. doi:10.2307/20076136. JSTOR   20076136.
  2. Sertel, Murat R.; Yılmaz, Bilge (1999-09-01). "The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable". Social Choice and Welfare. 16 (4): 615–627. CiteSeerX   10.1.1.597.1421 . doi:10.1007/s003550050164. ISSN   0176-1714. S2CID   128357237.
  3. Felsenthal, Dan S; Nurmi, Hannu (2018). Voting procedures for electing a single candidate : proving their (in)vulnerability to various voting paradoxes. Cham, Switzerland: Springer. ISBN   978-3-319-74033-1.
  4. Kondratev, Aleksei Y.; Nesterov, Alexander S. (2020). "Measuring Majority Power and Veto Power of Voting Rules". Public Choice. 183 (1–2): 187–210. arXiv: 1811.06739 . doi:10.1007/s11127-019-00697-1. S2CID   53670198.
  5. Sanver, M. Remzi (2002-03-01). "Scoring rules cannot respect majority in choice and elimination simultaneously". Mathematical Social Sciences. 43 (2): 151–155. doi:10.1016/S0165-4896(01)00087-7.
  6. Woeginger, Gerhard J. (December 2003). "A note on scoring rules that respect majority in choice and elimination" (PDF). Mathematical Social Sciences. 46 (3): 347–354. doi:10.1016/S0165-4896(03)00050-7.