Resolvability criterion

Last updated

A voting system is called decisive, resolvable, or resolute if it ensures a low probability of tied elections. There are two different criterion that formalize this [1] .

A non-resolvable social choice function is often only considered to be a partial electoral method, sometimes called a voting correspondence or set-valued voting rule. Such methods frequently require tiebreakers that can substantially affect the result. However, non-resolute methods can be used as a first stage to eliminate candidates before ties are broken with some other method. Methods that have been used this way include the Copeland set, the Smith set, and the Landau set.

Related Research Articles

<span class="mw-page-title-main">Approval voting</span> Single-winner electoral system

Approval voting is a single-winner electoral system in which voters mark all the candidates they support, instead of just choosing one. The candidate with the highest approval rating is elected. Approval voting is currently in use for government elections in St. Louis, Missouri, Fargo, North Dakota and in the United Nations.

Strategic or tactical voting is voting in consideration of possible ballots cast by other voters in order to maximize one's satisfaction with the election's results. For example, in plurality or instant-runoff, a voter may recognize their favorite candidate is unlikely to win and so instead support a candidate they think is more likely to win.

<span class="mw-page-title-main">Condorcet paradox</span> Self-contradiction of majority rule

In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Smith set</span> Set preferred to any other by a majority

The Smith or Schwartz set, sometimes called the top-cycle, generalizes the idea of a Condorcet winner to cases where no such winner exists. It does so by allowing cycles of candidates to be treated jointly, as if they were a single Condorcet winner.

<span class="mw-page-title-main">Negative responsiveness paradox</span> Property of electoral systems

In social choice, negative or perverse response is a pathological behavior of some voting rules, where increasing an option's ranking or rating causes them to lose. Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.

Independence of irrelevant alternatives (IIA) is a major axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, cognitive science, social choice, fair division, rational choice, artificial intelligence, probability, and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.

<span class="mw-page-title-main">Schulze method</span> Single-winner electoral system

The Schulze or beatpath method is a single winner ranked-choice voting rule developed by Markus Schulze. It is also known as the beatpath method. The Schulze method is a Condorcet completion method, which means it will elect a majority-preferred candidate if one exists. In other words, if most people rank A above B, A will defeat B. Schulze's method breaks cyclic ties by using indirect victories. The idea is that if Alice beats Bob, and Bob beats Charlie, then Alice (indirectly) beats Charlie; this kind of indirect win is called a beatpath.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

In an election, a candidate is called a majority winner or majority-preferred candidate if more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">No-show paradox</span> When voting for a candidate makes them lose

In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.

<span class="mw-page-title-main">Kemeny–Young method</span> Single-winner electoral system

The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.

<span class="mw-page-title-main">Independence of clones criterion</span> Property of electoral systems

In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a very weak form of the independence of irrelevant alternatives (IIA) criterion.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV), also known as ranked-choice voting (RCV), preferential voting (PV), or the alternative vote (AV), is a multi-round elimination rule where the loser of each round is determined by first-past-the-post voting. In academic contexts, the system is generally called instant-runoff voting to avoid conflating it with other methods of ranked voting in general.

<span class="mw-page-title-main">Majority judgment</span> Single-winner cardinal voting system

Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It is a kind of highest median rule, a cardinal voting system that elects the candidate with the highest median rating.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.

<span class="mw-page-title-main">STAR voting</span> Single-winner electoral system

STAR voting is an electoral system for single-seat elections. The name stands for "Score then Automatic Runoff", referring to the fact that this system is a combination of score voting, to pick two finalists with the highest total scores, followed by an "automatic runoff" in which the finalist who is preferred on more ballots wins. It is a type of cardinal voting electoral system.

References

  1. Schulze, Markus (2011). "A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method". Social Choice and Welfare. 36 (2): 267–303. doi:10.1007/s00355-010-0475-4. ISSN   0176-1714. JSTOR   41108129.