Plurality criterion

Last updated

Woodall 'splurality criterion is a voting criterion for ranked voting. It is stated as follows:

If the number of ballots ranking A as the first preference is greater than the number of ballots on which another candidate B is given any preference [other than last], then A's probability of winning must be no less than B's.

Woodall has called the plurality criterion "a rather weak property that surely must hold in any real election" opining that "every reasonable electoral system seems to satisfy it."

Among Condorcet methods which permit truncation, whether the plurality criterion is satisfied depends often on the measure of defeat strength. When winning votes is used as the measure of defeat strength, plurality is satisfied. Plurality is failed when margins is used. Minimax using pairwise opposition also fails plurality.

When truncation is permitted under Borda count, the plurality criterion is satisfied when no points are scored to truncated candidates, and ranked candidates receive no fewer votes than if the truncated candidates had been ranked. If truncated candidates are instead scored the average number of points that would have been awarded to those candidates had they been strictly ranked, or if Nauru's modified Borda count is used, the plurality criterion is failed.

Related Research Articles

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

<span class="mw-page-title-main">Bucklin voting</span> Class of electoral systems

Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

In an election, a candidate is called a majority winner or majority-preferred candidate if more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">Median voter theorem</span> Theorem in political science

The median voter theorem in political science and social choice theory, developed by Duncan Black, states that if voters and candidates are distributed along a one-dimensional spectrum and voters have single-peaked preferences, any voting method that is compatible with majority-rule will elect the candidate preferred by the median voter. The median voter theorem thus shows that under a realistic model of voter behavior, Arrow's theorem, which essentially suggests that ranked-choice voting systems cannot eliminate the spoiler effect, does not apply, and therefore that rational social choice is in fact possible if the election system is using a Condorcet method.

<span class="mw-page-title-main">Majority favorite criterion</span> Property of electoral systems

The majority favorite criterion is a voting system criterion that says that, if a candidate would win more than half the vote in a first-preference plurality election, that candidate should win. Equivalently, if only one candidate is ranked first by a over 50% of voters, that candidate must win. It is occasionally referred to simply as the "majority criterion", but this term is more often used to refer to Condorcet's majority-rule principle.

<span class="mw-page-title-main">Nanson's method</span> Single-winner electoral system

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

<span class="mw-page-title-main">Minimax Condorcet method</span> Single-winner ranked-choice voting system

In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) number of votes in their worst (minimum) matchup is declared the winner.

<span class="mw-page-title-main">Bullet voting</span> Vote supporting only a single candidate

Bullet, single-shot, or plump voting is when a voter supports only a single candidate, typically to show strong support for a single favorite.

<span class="mw-page-title-main">Positional voting</span> Class of ranked-choice electoral systems

Positional voting is a ranked voting electoral system in which the options or candidates receive points based on their rank position on each ballot and the one with the most points overall wins. The lower-ranked preference in any adjacent pair is generally of less value than the higher-ranked one. Although it may sometimes be weighted the same, it is never worth more. A valid progression of points or weightings may be chosen at will or it may form a mathematical sequence such as an arithmetic progression, a geometric one or a harmonic one. The set of weightings employed in an election heavily influences the rank ordering of the candidates. The steeper the initial decline in preference values with descending rank, the more polarised and less consensual the positional voting system becomes.

<span class="mw-page-title-main">Best-is-worst paradox</span> Same candidate placing first and last in a race

In social choice theory, the best-is-worst paradox occurs when a candidate finishes simultaneously in first- and last- place according to the same voting method; in other words, if a voting system elects the worst candidate, according to the method itself. Formally, this worst candidate is identified by reversing each voter's ballot, then reapplying the voting rule to find a new "anti-winner". Such paradoxes can occur in ranked-choice runoff voting (RCV) and minimax. A well-known example is the 2022 Alaska special election, where candidate Mary Peltola was both the winner and anti-winner.

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.

<span class="mw-page-title-main">Independence of clones criterion</span> Property of electoral systems

In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a very weak form of the independence of irrelevant alternatives (IIA) criterion.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV), also known as ranked-choice voting (RCV), preferential voting (PV), or the alternative vote (AV), is a multi-round elimination rule where the loser of each round is determined by first-past-the-post voting. In academic contexts, the system is generally called instant-runoff voting to avoid conflating it with other methods of ranked voting in general.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.

There are a number of different criteria which can be used for voting systems in an election, including the following

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

Homogeneity is a common property for voting systems. The property is satisfied if, in any election, the result depends only on the proportion of ballots of each possible type. That is, if every ballot is replicated the same number of times, then the result should not change.

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.

References