There are a number of different criteria which can be used for voting systems in an election, including the following
A Condorcet (French: [kɔ̃dɔʁsɛ] , English: /kɒndɔːrˈseɪ/ ) winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates. [1] [2]
The Condorcet winner is also called a majority winner, a majority-preferred candidate, [3] [4] [5] a beats-all winner, or tournament winner (by analogy with round-robin tournaments). A Condorcet winner may not necessarily always exist in a given electorate: it is possible to have a rock, paper, scissors-style cycle, when multiple candidates defeat each other (Rock < Paper < Scissors < Rock). This is called Condorcet's voting paradox, [6] and is analogous to the counterintuitive intransitive dice phenomenon known in probability. However, the Smith set, a generalization of the Condorcet criteria that is the smallest set of candidates that are pairwise unbeaten by every candidate outside of it, will always exist.
If voters are arranged on a sole 1-dimensional axis, such as the left-right political spectrum for a common example, and always prefer candidates who are more similar to themselves, a majority-rule winner always exists and is the candidate whose ideology is most representative of the electorate, a result known as the median voter theorem. [7] However, in real-life political electorates are inherently multidimensional, and the use of a one- or even two-dimensional model of such electorates would be inaccurate. [8] [9] Previous research has found cycles to be somewhat rare in real elections, with estimates of their prevalence ranging from 1-10% of races. [10]
Systems that guarantee the election of a Condorcet winners (when one exists) include Ranked Pairs, Schulze's method, and the Tideman alternative method. Methods that do not guarantee that the Cordorcet winner will be elected, even when one does exist, include instant-runoff voting (often called ranked-choice in the United States), First-past-the-post voting, and the two-round system. Most rated systems, like score voting and highest median, fail the majority winner criterion.In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.
A voting system complying with the Condorcet loser criterion will never allow a Condorcet loser to win. A Condorcet loser is a candidate who can be defeated in a head-to-head competition against each other candidate. [11] (Not all elections will have a Condorcet loser since it is possible for three or more candidates to be mutually defeatable in different head-to-head competitions.)The Smith set, [note 1] sometimes called the top-cycle, generalizes the idea of a Condorcet winner to cases where no such winner exists. It does so by allowing cycles of candidates to be treated jointly, as if they were a single Condorcet winner. [12] Voting systems that always elect a candidate from the Smith set pass the Smith criterion. The Smith set and Smith criterion are both named for mathematician John H Smith.
The Smith set provides one standard of optimal choice for an election outcome. An alternative, stricter criterion is given by the Landau set.A voting system satisfies join-consistency (also called the reinforcement criterion) if combining two sets of votes, both electing A over B, always results in a combined electorate that ranks A over B. It is a stronger form of the participation criterion. Systems that fail the consistency criterion (such as Instant-runoff voting or Condorcet methods) are susceptible to the multiple-district paradox, which allows for a particularly egregious kind of gerrymander: it is possible to draw boundaries in such a way that a candidate who wins the overall election fails to carry even a single electoral district. [13]
There are three variants of join-consistency:
A voting system is winner-consistent if and only if it is a point-summing method; in other words, it must be a positional voting system or score voting (including approval voting). [14] [15]
As shown below under Kemeny-Young, whether a system passes reinforcement can depend on whether the election selects a single winner or a full ranking of the candidates (sometimes referred to as ranking consistency): in some methods, two electorates with the same winner but different rankings may, when added together, lead to a different winner. Kemeny-Young is the only ranking-consistent Condorcet method, and no Condorcet method can be winner-consistent. [15]Independence of irrelevant alternatives (IIA) is an axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, [19] cognitive science, social choice, [19] fair division, rational choice, artificial intelligence, probability, [20] and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.
In behavioral economics, failures of IIA (caused by irrationality) are called menu effects or menu dependence. [21]In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. [22] It can be considered a weak form of the independence of irrelevant alternatives (IIA) criterion that nevertheless is failed by a number of voting rules. A method that passes the criterion is said to be clone independent. [23]
A group of candidates are called clones if they are always ranked together, placed side-by-side, by every voter; no voter ranks any of the non-clone candidates between or equal to the clones. In other words, the process of cloning a candidate involves taking an existing candidate C, then replacing them with several candidates C1, C2... who are slotted into the original ballots in the spot where C previously was, with the clones being arranged in any order. If a set of clones contains at least two candidates, the criterion requires that deleting one of the clones must not increase or decrease the winning chance of any candidate not in the set of clones.
Ranked pairs, the Schulze method, and systems that unconditionally satisfy independence of irrelevant alternatives are clone independent. Instant-runoff voting passes as long as tied ranks are disallowed. If they are allowed, its clone independence depends on specific details of how the criterion is defined and how tied ranks are handled. [24]
Rated methods like range voting or majority judgment that are spoilerproof under certain conditions are also clone independent under those conditions.
The Borda count, minimax, Kemeny–Young, Copeland's method, plurality, and the two-round system all fail the independence of clones criterion. Voting methods that limit the number of allowed ranks also fail the criterion, because the addition of clones can leave voters with insufficient space to express their preferences about other candidates. For similar reasons, ballot formats that impose such a limit may cause an otherwise clone-independent method to fail.
This criterion is very weak, as adding a substantially similar (but not quite identical) candidate to a race can still substantially affect the results and cause vote splitting. For example, the center squeeze pathology that affects instant-runoff voting means that several similar (but not identical) candidates competing in the same race will tend to hurt each other's chances of winning. [25]Independence of Smith-dominated alternatives (ISDA, also known as Smith-IIA) is a voting system criterion which says that the winner of an election should not be affected by candidates who are not in the Smith set. [26]
Another way of defining ISDA is to say that adding a new candidate should not change the winner of an election, unless that new candidate would beats the original winner, either directly or indirectly (by beating a candidate who beats a candidate who... who beats the winner).[ citation needed ]Name | Comply? |
---|---|
Plurality | Yes [note 2] |
Two-round system | Yes |
Partisan primary | Yes |
Instant-runoff voting | Yes |
Minimax Opposition | Yes |
DSC | Yes |
Anti-plurality | No[ citation needed ] |
Approval | N/A |
Borda | No |
Dodgson | No |
Copeland | No |
Kemeny–Young | No |
Ranked Pairs | No |
Schulze | No |
Score | No |
Majority judgment | No |
Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose. It is a common property in the plurality-rule family of voting systems.
For example, say a group of voters ranks Alice 2nd and Bob 6th, and Alice wins the election. In the next election, Bob focuses on expanding his appeal with this group of voters, but does not manage to defeat Alice—Bob's rating increases from 6th-place to 3rd. Later-no-harm says that this increased support from Alice's voters should not allow Bob to win. [27]
Later-no-harm may be confused as implying center squeeze, since later-no-harm is a defining characteristic of first-preference plurality (FPP) and instant-runoff voting (IRV), and descending solid coalitions (DSC), systems that have similar mechanics that are based on first preference counting. These systems pass later-no-harm compliance by making sure the results either do not depend on lower preferences at all (plurality) or only depend on them if all higher preferences have been eliminated (IRV and DSC), and thus exhibit a center squeeze effect. [28] [29] However, this does not mean that methods that pass later-no-harm must be vulnerable to center squeezes. The properties are distinct, as Minimax opposition also passes later-no-harm.
Later-no-harm is also often confused with immunity to a kind of strategic voting called strategic truncation or bullet voting. [30] Satisfying later-no-harm does not provide immunity to such strategies. Systems like instant runoff that pass later-no-harm but fail monotonicity still incentivize truncation or bullet voting in some situations. [31] [32] [33] : 401The majority criterion is a voting system criterion applicable to voting rules over ordinal preferences required that if only one candidate is ranked first by over 50% of voters, that candidate must win. [34]
Some methods that comply with this criterion include any Condorcet method, instant-runoff voting, Bucklin voting, plurality voting, and approval voting.
The mutual majority criterion is a generalized form of the criterion meant to account for when the majority prefers multiple candidates above all others; voting methods which pass majority but fail mutual majority can encourage all but one of the majority's preferred candidates to drop out in order to ensure one of the majority-preferred candidates wins, creating a spoiler effect. [35]The majority loser criterion is a criterion to evaluate single-winner voting systems. [36] [37] [38] [39] The criterion states that if a majority of voters give a candidate no support, i.e. do not list that candidate on their ballot, that candidate must lose (unless no candidate is accepted by a majority of voters).
Either of the Condorcet loser criterion or the mutual majority criterion implies the majority loser criterion. However, the Condorcet criterion does not imply the majority loser criterion, since the minimax method satisfies the Condorcet but not the majority loser criterion. Also, the majority criterion is logically independent from the majority loser criterion, since the plurality rule satisfies the majority but not the majority loser criterion, and the anti-plurality rule satisfies the majority loser but not the majority criterion. There is no positional scoring rule which satisfies both the majority and the majority loser criterion, [40] [41] but several non-positional rules, including many Condorcet rules, do satisfy both. Some voting systems, like instant-runoff voting, fail the criterion if extended to handle incomplete ballots.In social choice, the negative responsiveness, [42] [43] perversity, [44] or additional support paradox [45] is a pathological behavior of some voting rules, where a candidate loses as a result of having "too much support" from some voters, or wins because they had "too much opposition". In other words, increasing (decreasing) a candidate's ranking or rating causes that candidate to lose (win). [45] Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicity criterion. [46]
Perversity is often described by social choice theorists as an exceptionally severe kind of electoral pathology. [47] Systems that allow for perverse response can create situations where a voter's ballot has a reversed effect on the election, thus treating the well-being of some voters as "less than worthless". [48] Similar arguments have led to constitutional prohibitions on such systems as violating the right to equal and direct suffrage. [49] [50] Negative response is often cited as an example of a perverse incentive, as voting rules with perverse response incentivize politicians to take unpopular or extreme positions in an attempt to shed excess votes.
Most ranked methods (including Borda and all common round-robin rules) satisfy positive response, [46] as do all common rated voting methods (including approval, highest medians, and score). [note 3]
Perversity occurs in instant-runoff voting (IRV), [51] the single transferable vote, [44] and quota-based apportionment methods. [43] According to statistical culture models of elections, the paradox is especially common in RCV/IRV and the two-round system.[ citation needed ] The randomized Condorcet method can violate monotonicity in the case of cyclic ties.
The participation criterion is a closely-related, but different, concept. While positive responsiveness deals with a voter changing their opinion (or vote), participation deals with situations where a voter choosing to cast a ballot has a reversed effect on the election. [52]Proportionality for solid coalitions (PSC) is a criterion of proportionality for ranked voting systems. It is an adaptation of the quota rule to voting systems in which there are no official party lists, and voters can directly support candidates. The criterion was first proposed by the British philosopher and logician Michael Dummett. [53] [54]
PSC is a relatively minimal definition of proportionality. To be guaranteed representation, a coalition of voters must rank all candidates within the same party first before candidates of other parties. And PSC does not guarantee proportional representation if voters rank candidates of different parties together (as they will no longer form a solid coalition).In social choice, a no-show paradox is a surprising behavior in some voting rules, where a candidate loses an election as a result of having too many supporters. [55] [56] More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. [57] Voting systems without the no-show paradox are said to satisfy the participation criterion. [58]
In systems that fail the participation criterion, a voter turning out to vote could make the result worse for them; such voters are sometimes referred to as having negative vote weights, particularly in the context of German constitutional law, where courts have ruled such a possibility violates the principle of one man, one vote. [59] [60] [61]
Positional methods and score voting satisfy the participation criterion. All deterministic voting rules that satisfy pairwise majority-rule [55] [62] can fail in situations involving four-way cyclic ties, though such scenarios are empirically rare, and the randomized Condorcet rule is not affected by the pathology. The majority judgment rule fails as well. [63] Ranked-choice voting (RCV) and the two-round system both fail the participation criterion with high frequency in competitive elections, typically as a result of a center squeeze. [56] [57] [64]
The no-show paradox is similar to, but not the same as, the perverse response paradox. Perverse response happens when an existing voter can make a candidate win by decreasing their rating of that candidate (or vice-versa). For example, under instant-runoff voting, moving a candidate from first-place to last-place on a ballot can cause them to win. [65]Woodall 'splurality criterion is a voting criterion for ranked voting. It is stated as follows: [66] [67]
Woodall has called the plurality criterion "a rather weak property that surely must hold in any real election" opining that "every reasonable electoral system seems to satisfy it."
Among Condorcet methods which permit truncation, whether the plurality criterion is satisfied depends often on the measure of defeat strength. When winning votes is used as the measure of defeat strength, plurality is satisfied. Plurality is failed when margins is used. Minimax using pairwise opposition also fails plurality.
When truncation is permitted under Borda count, the plurality criterion is satisfied when no points are scored to truncated candidates, and ranked candidates receive no fewer votes than if the truncated candidates had been ranked. If truncated candidates are instead scored the average number of points that would have been awarded to those candidates had they been strictly ranked, or if Nauru's modified Borda count is used, the plurality criterion is failed.
A voting system is called decisive, resolvable, or resolute if it ensures a low probability of tied elections. There are two different criterion that formalize this. [68]
In social choice theory, the best-is-worst paradox occurs when a voting rule declares the same candidate to be both the best and worst possible winner. The worst candidate can be identified by reversing each voter's ballot (to rank candidates from worst-to-best), then applying the voting rule to the reversed ballots find a new "anti-winner". [69] [70]
Rules that never exhibit a best-is-worst paradox are said to satisfy the reversal criterion, which states that if every voter's opinions on each candidate are perfectly reversed (i.e. they rank candidates from worst to best), the outcome of the election should be reversed as well, meaning the first- and last- place finishers should switch places. [70] In other words, the results of the election should not depend arbitrarily on whether voters rank candidates from best to worst (and then select the best candidate), or whether we ask them to rank candidates from worst to best (and then select the least-bad candidate).
Methods that satisfy reversal symmetry include the Borda count, ranked pairs, Kemeny–Young, and Schulze. Most rated voting systems, including approval and score voting, satisfy the criterion as well. Best-is-worst paradoxes can occur in ranked-choice runoff voting (RCV) and minimax. A well-known example is the 2022 Alaska special election, where candidate Mary Peltola was both the winner and anti-winner.In social choice theory, unrestricted domain, or universality, is a property of social welfare functions in which all preferences of all voters (but no other considerations) are allowed. Intuitively, unrestricted domain is a common requirement for social choice functions, and is a condition for Arrow's impossibility theorem.
With unrestricted domain, the social welfare function accounts for all preferences among all voters to yield a unique and complete ranking of societal choices. Thus, the voting mechanism must account for all individual preferences, it must do so in a manner that results in a complete ranking of preferences for society, and it must deterministically provide the same ranking each time voters' preferences are presented the same way.A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.
Arrow's impossibility theorem is a key result in social choice theory, showing that no ranking-based decision rule can satisfy the requirements of rational choice theory. Most notably, Arrow showed that no such rule can satisfy all of a certain set of seemingly simple and reasonable conditions that include independence of irrelevant alternatives, the principle that a choice between two alternatives A and B should not depend on the quality of some third, unrelated option C.
Coombs' method is a ranked voting system. Like instant-runoff (IRV-RCV), Coombs' method is a sequential-loser method, where the last-place finisher according to one method is eliminated in each round. However, unlike in instant-runoff, each round has electors voting against their least-favorite candidate; the candidate ranked last by the most voters is eliminated.
The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.
In social choice, the negative responsiveness, perversity, or additional support paradox is a pathological behavior of some voting rules, where a candidate loses as a result of having "too much support" from some voters, or wins because they had "too much opposition". In other words, increasing (decreasing) a candidate's ranking or rating causes that candidate to lose (win). Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.
Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system.
Ranked Pairs (RP), also known as the Tideman method, is a tournament-style system of ranked voting first proposed by Nicolaus Tideman in 1987.
A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.
In social choice, a no-show paradox is a surprising behavior in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.
The majority criterion is a voting system criterion applicable to voting rules over ordinal preferences required that if only one candidate is ranked first by over 50% of voters, that candidate must win.
The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.
In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.
Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose. It is a common property in the plurality-rule family of voting systems.
In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a weak form of the independence of irrelevant alternatives (IIA) criterion that nevertheless is failed by a number of voting rules. A method that passes the criterion is said to be clone independent.
Instant-runoff voting (IRV) is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoffs with only one vote. In each round, the candidate with the fewest votes counting towards them is eliminated, and the votes are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system.
The majority loser criterion is a criterion to evaluate single-winner voting systems. The criterion states that if a majority of voters give a candidate no support, i.e. do not list that candidate on their ballot, that candidate must lose.
The 2009 Burlington mayoral election was the second mayoral election since the city's 2005 change to instant-runoff voting (IRV), also known as ranked-choice voting (RCV), after the 2006 mayoral election. In the 2009 election, incumbent Burlington mayor won reelection as a member of the Vermont Progressive Party, defeating Kurt Wright in the final round with 48% of the vote.
Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties. In instant-runoff voting (IRV) and the single transferable vote system (STV), lower preferences are used as contingencies and are only applied when all higher-ranked preferences on a ballot have been eliminated or when one of the higher ranked preferences has been elected and surplus votes need to be transferred.
The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.
Homogeneity is a common property for voting systems. The property is satisfied if, in any election, the result depends only on the proportion of ballots of each possible type. That is, if every ballot is replicated the same number of times, then the result should not change.
{{citation}}
: CS1 maint: location missing publisher (link)The analysis reveals that the underlying political landscapes ... are inherently multidimensional and cannot be reduced to a single left-right dimension, or even to a two-dimensional space.
For instance, if preferences are distributed spatially, there need only be two or more dimensions to the alternative space for cyclic preferences to be almost inevitable
Smith-IIA [ISDA] Definition: Removing a candidate from the ballot who is not a member of the Smith set will not change the result of the election. ('IIA' here stands for 'independence of irrelevant alternatives'.)
third place Candidate C is a centrist who is in fact the second choice of Candidate A's left-wing supporters and Candidate B's right-wing supporters. ... In such a situation, Candidate C would prevail over both Candidates A ... and B ... in a one-on-one runoff election. Yet, Candidate C would not prevail under IRV because he or she finished third and thus would be the first candidate eliminated
There is a Condorcet ranking according to distance from the center, but Condorcet winner M, the most central candidate, was squeezed between the two others, got the smallest primary support, and was eliminated.
if there is some single alternative which is ranked first by a majority of voters, we shall say there exists a majority will in favor of that alternative, according to the absolute majority (AM) criterion.
it is generally agreed among social choice theorists that a voting method that is susceptible to any type of monotonicity failure suffers from a particularly serious defect.
Since we are trying to describe social welfare and not some sort of illfare, we must assume that the social welfare function is such that the social ordering responds positively to alterations in individual values, or at least not negatively. Hence, if one alternative social state rises or remains still in the ordering of every individual without any other change in those orderings, we expect that it rises, or at least does not fall, in the social ordering.