Quota rule

Last updated

In mathematics and political science, the quota rule describes a desired property of a proportional apportionment or election method. It states that the number of seats that should be allocated to a given party should be between the upper or lower roundings (called upper and lower quotas) of its fractional proportional share (called natural quota). [1] As an example, if a party deserves 10.56 seats out of 15, the quota rule states that when the seats are allotted, the party may get 10 or 11 seats, but not lower or higher. Many common election methods, such as all highest averages methods, violate the quota rule.

Contents

Mathematics

If is the population of the party, is the total population, and is the number of available seats, then the natural quota for that party (the number of seats the party would ideally get) is

The lower quota is then the natural quota rounded down to the nearest integer while the upper quota is the natural quota rounded up. The quota rule states that the only two allocations that a party can receive should be either the lower or upper quota. [1] If at any time an allocation gives a party a greater or lesser number of seats than the upper or lower quota, that allocation (and by extension, the method used to allocate it) is said to be in violation of the quota rule. Another way to state this is to say that a given method only satisfies the quota rule if each party's allocation differs from its natural quota by less than one, where each party's allocation is an integer value. [2]

Example

If there are 5 available seats in the council of a club with 300 members, and party A has 106 members, then the natural quota for party A is . The lower quota for party A is 1, because 1.8 rounded down equal 1. The upper quota, 1.8 rounded up, is 2. Therefore, the quota rule states that the only two allocations allowed for party A are 1 or 2 seats on the council. If there is a second party, B, that has 137 members, then the quota rule states that party B gets , rounded up and down equals either 2 or 3 seats. Finally, a party C with the remaining 57 members of the club has a natural quota of , which means its allocated seats should be either 0 or 1. In all cases, the method for actually allocating the seats determines whether an allocation violates the quota rule, which in this case would mean giving party A any seats other than 1 or 2, giving party B any other than 2 or 3, or giving party C any other than 0 or 1 seat.

Relation to apportionment paradoxes

The Balinski–Young theorem proved in 1980 that if an apportionment method satisfies the quota rule, it must fail to satisfy some apportionment paradox. [3] For instance, although Largest remainder method satisfies the quota rule, it violates the Alabama paradox and the population paradox. The theorem itself is broken up into several different proofs that cover a wide number of circumstances. [4]

Specifically, there are two main statements that apply to the quota rule:

Use in apportionment methods

Different methods for allocating seats may or may not satisfy the quota rule. While many methods do violate the quota rule, it is sometimes preferable to violate the rule very rarely than to violate some other apportionment paradox; some sophisticated methods violate the rule so rarely that it has not ever happened in a real apportionment, while some methods that never violate the quota rule violate other paradoxes in much more serious fashions.

The Largest remainder method does satisfy the quota rule. The method works by proportioning seats equally until a fractional value is reached; the surplus seats are then given to the party with the largest fractional parts until there are no more surplus seats. Because it is impossible to give more than one surplus seat to a party, every party will always get either its lower or upper quota. [5]

The D'Hondt method, also known as the Jefferson method [6] sometimes violates the quota rule by allocating more seats than the upper quota allowed. [7] Since Jefferson was the first method used for Congressional apportionment in the United States, this violation led to a growing problem where larger states receive more representatives than smaller states, which was not corrected until the Webster/Sainte-Laguë method was implemented in 1842; even though Webster/Sainte-Laguë does violate the quota rule, it happens extremely rarely. [8]

Related Research Articles

<span class="mw-page-title-main">Party-list proportional representation</span> Family of voting systems

Party-list proportional representation (list-PR) is a subset of proportional representation electoral systems in which multiple candidates are elected through their position on an electoral list. They can also be used as part of mixed-member electoral systems.

The D'Hondt method, also called the Jefferson method or the greatest divisors method, is an apportionment method for allocating seats in parliaments among federal states, or in proportional representation among political parties. It belongs to the class of highest-averages methods. The D'Hondt method reduces compared to ideal proportional representation somewhat the political fragmentation for smaller electoral district sizes, where it favors larger political parties over small parties.

The Webster method, also called the Sainte-Laguë method, is a highest averages apportionment method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system. The Sainte-Laguë method shows a more equal seats-to-votes ratio for different sized parties among apportionment methods.

In mathematics, economics, and political science, the highest averages methods, also called divisor methods, are a class of apportionment algorithms for proportional representation. Divisor algorithms seek to fairly divide a legislature between agents. More generally, divisor methods are used to divide or round a whole number of objects being used to represent (non-whole) shares of a total.

The largest remainder method is one way of allocating seats proportionally for representative assemblies with party list voting systems. It contrasts with various highest averages methods.

<span class="mw-page-title-main">United States congressional apportionment</span> How 435 seats are distributed to 50 states

United States congressional apportionment is the process by which seats in the United States House of Representatives are distributed among the 50 states according to the most recent decennial census mandated by the United States Constitution. After each state is assigned one seat in the House, most states are then apportioned a number of additional seats which roughly corresponds to its share of the aggregate population of the 50 states. Every state is constitutionally guaranteed at least one seat in the House and two seats in the Senate, regardless of population.

An apportionment paradox exists when the rules for apportionment in a political system produce results which are unexpected or seem to violate common sense.

The single transferable vote (STV) is a proportional representation voting system that elects multiple winners. It is one of several ways of choosing winners from ballots that rank candidates by preference. Under STV, an elector's vote is initially allocated to their most-preferred candidate. Candidates are elected (winners) if their vote tally reaches quota. After this 1st Count, if seats still remain open, surplus votes are transferred from winners to remaining candidates (hopefuls) according to the surplus ballots' next usable back-up preference. if no surplus votes have to be transferred, then the least-popular candidate is eliminated so the vote has chance to be placed on a candidate who can use it.

The Huntington–Hill method is a method for proportional allocation of the seats in a representative assembly by minimizing the percentage differences in the number of constituents represented by each seat. Edward Huntington formulated this approach, building on the earlier work of Joseph Adna Hill, and called it the method of equal proportions. Since 1941, this method has been used to apportion the 435 seats in the United States House of Representatives following the completion of each decennial census.

Party-list representation in the House of Representatives of the Philippines refers to a system in which 20% of the House of Representatives is elected. While the House is predominantly elected by a plurality voting system, known as a first-past-the-post system, party-list representatives are elected by a type of party-list proportional representation. The 1987 Constitution of the Philippines created the party-list system. Originally, the party-list was open to underrepresented community sectors or groups, including labor, peasant, urban poor, indigenous cultural, women, youth, and other such sectors as may be defined by law. However, a 2013 Supreme Court decision clarified that the party-list is a system of proportional representation open to various kinds of groups and parties, and not an exercise exclusive to marginalized sectors. National parties or organizations and regional parties or organizations do not need to organize along sectoral lines and do not need to represent any marginalized and underrepresented sector.

Biproportional apportionment is a proportional representation method to allocate seats in proportion to two separate characteristics. That is, for two different partitions each part receives the proportional number of seats within the total number of seats. For instance, this method could give proportional results by party and by region, or by party and by gender/ethnicity, or by any other pair of characteristics.

  1. Example: proportional by party and by region
  2. Then, as nearly as possible given the totals for each region and each party:

Apportionment in the Hellenic Parliament refers to those provisions of the Greek electoral law relating to the distribution of Greece's 300 parliamentary seats to the parliamentary constituencies, as well as to the method of seat allocation in Greek legislative elections for the various political parties. The electoral law was codified for the first time through a 2012 Presidential Decree. Articles 1, 2, and 3 deal with how the parliamentary seats are allocated to the various constituencies, while articles 99 and 100 legislate the method of parliamentary apportionment for political parties in an election. In both cases, Greece uses the largest remainder method.

Mathematics of apportionment describes mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world.

House monotonicity is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states. The property says that, if the number of seats in the "house" increases, and the method is re-activated, then no state should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.

State-population monotonicity is a property of apportionment methods, which are methods of allocating seats in a parliament among federal states or political parties. The property says that if the population of State A increases faster than that of State B, then State A should not lose any seats to State B. Apportionment methods violating this rule are called population paradoxes.

Seat bias is a property describing methods of apportionment. These are methods used to allocate seats in a parliament among federal states or among political parties. A method is biased if it systematically favors small parties over large parties, or vice versa. There are various ways to compute the bias of apportionment methods.

Coherence, also called uniformity or consistency, is a criterion for evaluating rules for fair division. Coherence requires that the outcome of a fairness rule is fair not only for the overall problem, but also for each sub-problem. Every part of a fair division should be fair.

Optimal apportionment is an approach to apportionment that is based on mathematical optimization.

Vote-ratio monotonicity (VRM) is a property of apportionment methods, which are methods of allocating seats in a parliament among political parties. The property says that, if the ratio between the number of votes won by party A to the number of votes won by party B increases, then it should NOT happen that party A loses a seat while party B gains a seat.

Balance or balancedness is a property of apportionment methods, which are methods of allocating identical items between among agens, such as dividing seats in a parliament among political parties or federal states. The property says that, if two agents have exactly the same entitlements, then the number of items they receive should differ by at most one. So if two parties win the same number of votes, or two states have the same populations, then the number of seats they receive should differ by at most one.

References

  1. 1 2 Michael J. Caulfield. "Apportioning Representatives in the United States Congress - The Quota Rule". MAA Publications. Retrieved October 22, 2018
  2. Alan Stein. Apportionment Methods Retrieved December 9, 2018
  3. Beth-Allyn Osikiewicz, Ph.D. Impossibilities of Apportionment Retrieved October 23, 2018.
  4. 1 2 3 M.L. Balinski and H.P. Young. (1980). "The Theory of Apportionment". Retrieved October 23 2018
  5. Hilary Freeman. "Apportionment". Retrieved October 22 2018
  6. "Apportionment 2" Retrieved October 22, 2018.
  7. Jefferson’s Method Retrieved October 22, 2018.
  8. Ghidewon Abay Asmerom. Apportionment. Lecture 4. Retrieved October 23, 2018.