Part of the Politics and Economics series |
Electoral systems |
---|
Politicsportal Economicsportal |
The method of equal shares [1] [2] [3] [4] is a proportional method of counting ballots that applies to participatory budgeting, [2] to committee elections, [3] and to simultaneous public decisions. [4] [5] It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power". [1]
In 2023, the method of equal shares was being used in a participatory budgeting program in the Polish city of Wieliczka. [6] The program, known as Green Million (Zielony Milion), was set to distribute 1 million złoty to ecological projects proposed by residents of the city. It was also used in a participatory budgeting program in the Swiss city of Aarau in 2023 (Stadtidee). [7]
The method of equal shares was first discussed in the context of committee elections in 2019, initially under the name "Rule X". [1] [3] [4] From 2022, the literature has referred to the rule as the method of equal shares, particularly when referring to it in the context of participatory budgeting algorithms. [2] [8] The method can be described as a member of a class of voting methods called expanding approvals rules introduced earlier in 2019 by Aziz and Lee for ordinal preferences (that include approval ballots). [9]
The method is an alternative to the knapsack algorithm which is used by most cities even though it is a disproportional method. For example, if 51 percent of the population support 10 red projects and 49 percent support 10 blue projects, and the money suffices only for 10 projects, the knapsack budgeting will choose the 10 red supported by the 51 percent, and ignore the 49 percent altogether. [10] In contrast, the method of equal shares would pick 5 blue and 5 red projects.
The method guarantees proportional representation: it satisfies a strong variant of the justified representation axiom adapted to participatory budgeting. [2] This says that a group of X percent of the population will have X percent of the budget spent on projects supported by the group (assuming that all members of the group have voted the same or at least similarly).
In the context of participatory budgeting the method assumes that the municipal budget is initially evenly distributed among the voters. Each time a project is selected its cost is divided among those voters who supported the project and who still have money. The savings of these voters are decreased accordingly. If the voters vote via approval ballots, then the cost of a selected project is distributed equally among the voters; if they vote via cardinal ballots, then the cost is distributed proportionally to the utilities the voters enjoy from the project. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.
The following example with 100 voters and 9 projects illustrates how the rule works. In this example the total budget equals $1000, that is it allows to select five from the nine available projects. See the animated diagram below, which illustrates the behaviour of the rule.
The budget is first divided equally among the voters, thus each voters gets $10. Project received most votes, and it is selected in the first round. If we divided the cost of equally among the voters, who supported , each of them would pay . In contrast, if we selected, e.g., , then the cost per voter would be . The method selects first the project that minimises the price per voter.
Note that in the last step project was selected even though there were projects which were supported by more voters, say . This is because, the money that the supporters of had the right to control, was used previously to justify the selection of , , and . On the other hand, the voters who voted for form 20 percent of the population, and so shall have right to decide about 20 percent of the budget. Those voters supported only , and this is why this project was selected.
For a more detailed example including cardinal ballots see Example 2.
This section presents the definition of the rule for cardinal ballots. See discussion for a discussion on how to apply this definition to approval ballots and ranked ballots.
We have a set of projects , and a set of voters . For each project let denote its cost, and let denote the size of the available municipal budget. For each voter and each project let denote the 's cardinal ballot on , that is the number that quantifies the level of appreciation of voter towards project .
The method of equal shares works in rounds. At the beginning it puts an equal part of the budget, in each voter's virtual bank account, . In each round the method selects one project according to the following procedure.
The following diagram illustrates the behaviour of the method.
This section provides a discussion on other variants of the method of equal shares.
The method of equal shares can be used with other types of voters ballots.
The method can be applied in two ways to the setting where the voters vote by marking the projects they like (see Example 1):
The method applies to the model where the voters vote by ranking the projects from the most to the least preferred one. Assuming lexicographic preferences, one can use the convention that depends on the position of project in the voter's ranking, and that , whenever ranks as more preferred than .
Formally, the method is defined as follows.
For each voter let denote the ranking of voter over the projects. For example, means that is the most preferred project from the perspective of voter , is the voter's second most preferred project and is the least preferred project. In this example we say that project is ranked in the first position and write , project is ranked in the second position (), and in the third position ().
Each voter is initially assigned an equal part of the budget . The rule proceeds in rounds, in each round:
In the context of committee elections the projects are typically called candidates. It is assumed that cost of each candidate equals one; then, the budget can be interpreted as the number of candidates in the committee that should be selected.
The method of equal shares can return a set of projects that does not exhaust the whole budget. There are multiple ways to use the unspent budget:
In the context of committee elections the method is often compared to Proportional Approval Voting (PAV), since both methods are proportional (they satisfy the axiom of Extended Justified Representation (EJR)). [11] [3] The difference between the two methods can be described as follow.
MES is similar to the Phragmen's sequential rule. The difference is that in MES the voters are given their budgets upfront, while in the Phragmen's sequential rule the voters earn money continuously over time. [13] [14] The methods compare as follows:
MES with adjusting initial budget, PAV and Phragmen's voting rules can all be viewed as extensions of the D'Hondt method to the setting where the voters can vote for individual candidates rather than for political parties. [15] [3] MES further extends to participatory budgeting. [2]
Below there is a Python implementation of the method that applies to participatory budgeting. For the model of committee elections, the rules is implemented as a part of the Python package abcvoting.
importmathdefmethod_of_equal_shares(N,C,cost,u,b):"""Method of Equal Shares Args: N: a list of voters. C: a list of projects (candidates). cost: a dictionary that assigns each project its cost. b: the total available budget. u: a dictionary; u[c][i] is the value that voter i assigns to candidate c. an empty entry means that the corresponding value u[c][i] equals 0. """W=set()total_utility={c:sum(u[c].values())forcinC}supporters={c:set([iforiinNifu[c][i]>0])forcinC}budget={i:b/len(N)foriinN}whileTrue:next_candidate=Nonelowest_rho=float("inf")forcinC.difference(W):if_leq(cost[c],sum([budget[i]foriinsupporters[c]])):supporters_sorted=sorted(supporters[c],key=lambdai:budget[i]/u[c][i])price=cost[c]util=total_utility[c]foriinsupporters_sorted:if_leq(price*u[c][i],budget[i]*util):breakprice-=budget[i]util-=u[c][i]rho=price/util \ ifnotmath.isclose(util,0)andnotmath.isclose(price,0) \ elsebudget[supporters_sorted[-1]]/u[c][supporters_sorted[-1]]ifrho<lowest_rho:next_candidate=clowest_rho=rhoifnext_candidateisNone:breakW.add(next_candidate)foriinN:budget[i]-=min(budget[i],lowest_rho*u[next_candidate][i])return_complete_utilitarian(N,C,cost,u,b,W)# one of the possible completionsdef_complete_utilitarian(N,C,cost,u,b,W):util={c:sum([u[c][i]foriinN])forcinC}committee_cost=sum([cost[c]forcinW])whileTrue:next_candidate=Nonehighest_util=float("-inf")forcinC.difference(W):if_leq(committee_cost+cost[c],b):ifutil[c]/cost[c]>highest_util:next_candidate=chighest_util=util[c]/cost[c]ifnext_candidateisNone:breakW.add(next_candidate)committee_cost+=cost[next_candidate]returnWdef_leq(a,b):returna<bormath.isclose(a,b)
Fairstein, Meir and Gal [16] extend MES to a setting in which some projects may be substitute goods.
Fairstein, Benade and Gal [17] compare MES to greedy aggregation methods. They find that greedy aggregation leads to outcomes that are highly sensitive to the input format used, and the fraction of the population that participates. In contrast, MES leads to outcomes that are not sensitive to the type of voting format used. This means that MES can be used with approval ballots, ordinal ballots or cardinal ballots, without much difference in the outcome. These outcomes are stable even when only 25 to 50 percent of the population participates in the election.
Fairstein, Meir, Vilenchik and Gal [18] study variants of MES both on real and synthetic datasets. They find that these variants do very well in practice, both with respect to social welfare and with respect to justified representation.
A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.
Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for solids and liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.
In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group where GL(V) is the general linear group of invertible linear transformations of V over F, and F∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation).
Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity.
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".
In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.
A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
The Ramsey–Cass–Koopmans model, or Ramsey growth model, is a neoclassical model of economic growth based primarily on the work of Frank P. Ramsey, with significant extensions by David Cass and Tjalling Koopmans. The Ramsey–Cass–Koopmans model differs from the Solow–Swan model in that the choice of consumption is explicitly microfounded at a point in time and so endogenizes the savings rate. As a result, unlike in the Solow–Swan model, the saving rate may not be constant along the transition to the long run steady state. Another implication of the model is that the outcome is Pareto optimal or Pareto efficient.
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.
In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.
In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.
Unsteady flows are characterized as flows in which the properties of the fluid are time dependent. It gets reflected in the governing equations as the time derivative of the properties are absent. For Studying Finite-volume method for unsteady flow there is some governing equations >
In quantum mechanics, the Redfield equation is a Markovian master equation that describes the time evolution of the reduced density matrix ρ of a strongly coupled quantum system that is weakly coupled to an environment. The equation is named in honor of Alfred G. Redfield, who first applied it, doing so for nuclear magnetic resonance spectroscopy. It is also known as the Redfield relaxation theory.
Proportional approval voting (PAV) is a proportional electoral system for multiwinner elections. It is a multiwinner approval method that extends the highest averages method of apportionment commonly used to calculate apportionments for party-list proportional representation. However, PAV allows voters to support only the candidates they approve of, rather than being forced to approve or reject all candidates on a given party list.
Combinatorial participatory budgeting, also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.
Phragmén's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Lars Edvard Phragmén in French and Swedish between 1893 and 1899, and translated to English by Svante Janson in 2016.