A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematicsportal |
Multiwinner [1] or committee [2] [3] voting refers to electoral systems that elect several candidates at once. Such methods can be used to elect parliaments or committees.
There are many scenarios in which multiwinner voting is useful. They can be broadly classified into three classes, based on the main objective in electing the committee: [4]
A major challenge in the study of multiwinner voting is finding reasonable adaptations of concepts from single-winner voting. These can be classified based on the voting type—approval voting vs. ranked voting.
Some election systems elect multiple members by competition held among individual candidates. These systems include Plurality block voting, single non-transferable voting (multiple non-transferable voting) and single transferable voting.
In other systems, candidates are grouped in committees (slates or party lists) and voters cast votes for the committees (or slates).
Approval voting is a common method for single-winner elections and sometimes for multiwinner elections. In single-winner elections, each voter marks the candidate he approves, and the candidate with the most votes wins.
With multiwinner voting, there are many ways to decide which candidate should be elected. In some, each voter ranks the candidates; in others they cast X votes. As well, each voter may cast single or multiple votes.
Already in 1895, Thiele suggested a family of weight-based rules called Thiele's voting rules. [2] [5] Each rule in the family is defined by a sequence of k weakly-positive weights, w1,...,wk (where k is the committee size). Each voter assigns, to each committee containing p candidates approved by the voter, a score equal to w1+...+wp. The committee with the highest total score is elected. Some common voting rules in Thiele's family are:
There are rules based on other principles, such as minimax approval voting [6] and its generalizations, [7] as well as Phragmen's voting rules [8] and the method of equal shares. [9] [10]
The complexity of determining the winners vary: MNTV winners can be found in polynomial time, while Chamberlin-Courant [11] and PAV are both NP-hard.
Positional scoring rules are common in rank-based single-winner voting. Each voter ranks the candidates from best to worst, a pre-specified function assigns a score to each candidate based on his rank, and the candidate with the highest total score is elected.
In multiwinner voting held using these systems, we need to assign scores to committees rather than to individual candidates. There are various ways to do this, for example: [1]
In single-winner voting, a Condorcet winner is a candidate who wins in every head-to-head election against each of the other candidates. A Condorcet method is a method that selects a Condorcet winner whenever it exists. There are several ways to adapt Condorcet's criterion to multiwinner voting:
Excellence means that the committee should contain the "best" candidates. Excellence-based voting rules are often called screening rules. [18] They are often used as a first step in a selection of a single best candidate, that is, a method for creating a shortlist. A basic property that should be satisfied by such a rule is committee monotonicity (also called house monotonicity, a variant of resource monotonicity): if some k candidates are elected by a rule, and then the committee size increases to k+1 and the rule is re-applied, then the first k candidates should still be elected. Some families of committee-monotone rules are:
The property of committee monotonicity is incompatible with the property of stability (a particular adaptation of Condorcet's criterion): there exists a single voting profile that admits a unique Condorcet set of size 2, and a unique Condorcet set of size 3, and they are disjoint (the set of size 2 is not contained in the set of size 3). [18]
On the other hand, there exists a family of positional scoring rules - the separable positional scoring rules - that are committee-monotone. These rules are also computable in polynomial time (if their underlying single-winner scoring functions are). [1] For example, k-Borda is separable while multiple non-transferable vote is not.
Diversity means that the committee should contain the top-ranked candidates of as many voters as possible. Formally, the following axioms are reasonable for diversity-centered applications:
Proportionality means that each cohesive group of voters (that is: a group of voters with similar preferences) should be represented by a number of winners proportional to its size. Formally, if the committee is of size k, there are n voters, and some L*n/k voters rank the same L candidates at the top (or approve the same L candidates), then these L candidates should be elected. This principle is easy to implement when the voters vote for parties (in party-list systems), but it can also be adapted to approval voting or ranked voting; see justified representation and proportionality for solid coalitions.
A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.
In social choice, a no-show paradox is a surprising behavior in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.
The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.
Proportionality for solid coalitions (PSC) is a criterion of proportionality for ranked voting systems. It is an adaptation of the quota rule to voting systems in which there are no official party lists, and voters can directly support candidates. The criterion was first proposed by the British philosopher and logician Michael Dummett.
The Borda method or order of merit is a positional voting rule that gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate or candidates with the most points is/are the winner or winners.
There are a number of different criteria which can be used for voting systems in an election, including the following
Proportional approval voting (PAV) is a proportional electoral system for multiwinner elections. It is a multiwinner approval method that extends the D'Hondt method of apportionment commonly used to calculate apportionments for party-list proportional representation. However, PAV allows voters to support only the candidates they approve of, rather than being forced to approve or reject all candidates on a given party list.
Sequential proportional approval voting (SPAV) or reweighted approval voting (RAV) is an electoral system that extends the concept of approval voting to a multiple winner election. It is a simplified version of proportional approval voting. It is a special case of Thiele's voting rules, proposed by Danish statistician Thorvald N. Thiele in the early 1900s. It was used in Sweden from 1909 to 1921, when it was replaced by a cruder "party-list" style system as it was easier to calculate, and is still used for some local elections.
Computational social choice is a field at the intersection of social choice theory, theoretical computer science, and the analysis of multi-agent systems. It consists of the analysis of problems arising from the aggregation of preferences of a group of agents from a computational perspective. In particular, computational social choice is concerned with the efficient computation of outcomes of voting rules, with the computational complexity of various forms of manipulation, and issues arising from the problem of representing and eliciting preferences in combinatorial settings.
This article discusses the methods and results of comparing different electoral systems. There are two broad ways to compare voting systems:
Combinatorial participatory budgeting, also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.
Justified representation (JR) is a criterion of fairness in multiwinner approval voting. It can be seen as an adaptation of the proportional representation criterion to approval voting.
Multiwinner approval voting, sometimes also called approval-based committee (ABC) voting, refers to a family of multi-winner electoral systems that use approval ballots. Each voter may select ("approve") any number of candidates, and multiple candidates are elected.
In fractional social choice, fractional approval voting refers to a class of electoral systems using approval ballots, in which the outcome is fractional: for each alternative j there is a fraction pj between 0 and 1, such that the sum of pj is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins and the other candidates lose. The fractions pj can be interpreted in various ways, depending on the setting. Examples are:
Phragmén's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Lars Edvard Phragmén in French and Swedish between 1893 and 1899, and translated to English by Svante Janson in 2016.
The method of equal shares is a proportional method of counting ballots that applies to participatory budgeting, to committee elections, and to simultaneous public decisions. It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power".
Multi-issue voting is a setting in which several issues have to be decided by voting. Multi-issue voting raises several considerations, that are not relevant in single-issue voting.
An expanding approvals rule (EAR) is a rule for multi-winner elections, which allows agents to express weak ordinal preferences, and guarantees a form of proportional representation called proportionality for solid coalitions. The family of EAR was presented by Aziz and Lee.
Fully proportional representation(FPR) is a property of multiwinner voting systems. It extends the property of proportional representation (PR) by requiring that the representation be based on the entire preferences of the voters, rather than on their first choice. Moreover, the requirement combines PR with the requirement of accountability - each voter knows exactly which elected candidate represents him, and each candidate knows exactly which voters he represents.
Thiele's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Thorvald Thiele in Danish in 1895, and translated to English by Svante Janson in 2016. They were used in Swedish parliamentary elections to distribute seats within parties, and are still used in city council elections.
{{cite book}}
: CS1 maint: multiple names: authors list (link)