A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematicsportal |
A voting system satisfies join-consistency (also called the reinforcement criterion) if combining two sets of votes, both electing A over B, always results in a combined electorate that ranks A over B. It is a stronger form of the participation criterion. Systems that fail the consistency criterion (such as ranked-choice voting or Condorcet methods) are susceptible to the multiple-district paradox, which allows for a particularly egregious kind of gerrymander: it is possible to draw boundaries in such a way that a candidate who wins the overall election fails to carry even a single electoral district. [1]
There are three variants of join-consistency:
A voting system is winner-consistent if and only if it is a point-summing method; in other words, it must be a positional voting system or score voting (including approval voting). [2] [3]
As shown below under Kemeny-Young, whether a system passes reinforcement can depend on whether the election selects a single winner or a full ranking of the candidates (sometimes referred to as ranking consistency): in some methods, two electorates with the same winner but different rankings may, when added together, lead to a different winner. Kemeny-Young is the only ranking-consistent Condorcet method, and no Condorcet method can be winner-consistent. [3]
This example shows that Copeland's method violates the consistency criterion. Assume five candidates A, B, C, D and E with 27 voters with the following preferences:
Preferences | Voters |
---|---|
A > D > B > E > C | 3 |
A > D > E > C > B | 2 |
B > A > C > D > E | 3 |
C > D > B > E > A | 3 |
E > C > B > A > D | 3 |
A > D > C > E > B | 3 |
A > D > E > B > C | 1 |
B > D > C > E > A | 3 |
C > A > B > D > E | 3 |
E > B > C > A > D | 3 |
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the Copeland winner for the first group of voters is determined.
Preferences | Voters |
---|---|
A > D > B > E > C | 3 |
A > D > E > C > B | 2 |
B > A > C > D > E | 3 |
C > D > B > E > A | 3 |
E > C > B > A > D | 3 |
The results would be tabulated as follows:
X [note 1] Y [note 2] | A | B | C | D | E |
---|---|---|---|---|---|
A | 9 5 | 6 8 | 3 11 | 6 8 | |
B | 5 9 | 8 6 | 8 6 | 5 9 | |
C | 8 6 | 6 8 | 5 9 | 8 6 | |
D | 11 3 | 6 8 | 9 5 | 3 11 | |
E | 8 6 | 9 5 | 6 8 | 11 3 | |
Pairwise election results (won-tied-lost) | 3–0–1 | 2–0–2 | 2–0–2 | 2–0–2 | 1–0–3 |
Result: With the votes of the first group of voters, A can defeat three of the four opponents, whereas no other candidate wins against more than two opponents. Thus, A is elected Copeland winner by the first group of voters.
Now, the Copeland winner for the second group of voters is determined.
Preferences | Voters |
---|---|
A > D > C > E > B | 3 |
A > D > E > B > C | 1 |
B > D > C > E > A | 3 |
C > A > B > D > E | 3 |
E > B > C > A > D | 3 |
The results would be tabulated as follows:
X Y | A | B | C | D | E |
---|---|---|---|---|---|
A | 6 7 | 9 4 | 3 10 | 6 7 | |
B | 7 6 | 6 7 | 4 9 | 7 6 | |
C | 4 9 | 7 6 | 7 6 | 4 9 | |
D | 10 3 | 9 4 | 6 7 | 3 10 | |
E | 7 6 | 6 7 | 9 4 | 10 3 | |
Pairwise election results (won-tied-lost) | 3–0–1 | 2–0–2 | 2–0–2 | 2–0–2 | 1–0–3 |
Result: Taking only the votes of the second group in account, again, A can defeat three of the four opponents, whereas no other candidate wins against more than two opponents. Thus, A is elected Copeland winner by the second group of voters.
Finally, the Copeland winner of the complete set of voters is determined.
Preferences | Voters |
---|---|
A > D > B > E > C | 3 |
A > D > C > E > B | 3 |
A > D > E > B > C | 1 |
A > D > E > C > B | 2 |
B > A > C > D > E | 3 |
B > D > C > E > A | 3 |
C > A > B > D > E | 3 |
C > D > B > E > A | 3 |
E > B > C > A > D | 3 |
E > C > B > A > D | 3 |
The results would be tabulated as follows:
X Y | A | B | C | D | E |
---|---|---|---|---|---|
A | 15 12 | 15 12 | 6 21 | 12 15 | |
B | 12 15 | 14 13 | 12 15 | 12 15 | |
C | 12 15 | 13 14 | 12 15 | 12 15 | |
D | 21 6 | 15 12 | 15 12 | 6 21 | |
E | 15 12 | 15 12 | 15 12 | 21 6 | |
Pairwise election results (won-tied-lost) | 2–0–2 | 3–0–1 | 4–0–0 | 1–0–3 | 0–0–4 |
Result: C is the Condorcet winner, thus Copeland chooses C as winner.
This example shows that Instant-runoff voting violates the consistency criterion. Assume three candidates A, B and C and 23 voters with the following preferences:
Preferences | Voters |
---|---|
A > B > C | 4 |
B > A > C | 2 |
C > B > A | 4 |
A > B > C | 4 |
B > A > C | 6 |
C > A > B | 3 |
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the instant-runoff winner for the first group of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 4 |
B > A > C | 2 |
C > B > A | 4 |
B has only 2 votes and is eliminated first. Its votes are transferred to A. Now, A has 6 votes and wins against C with 4 votes.
Candidate | Votes in round | |
---|---|---|
1st | 2nd | |
A | 4 | 6 |
B | 2 | |
C | 4 | 4 |
Result: A wins against C, after B has been eliminated.
Now, the instant-runoff winner for the second group of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 4 |
B > A > C | 6 |
C > A > B | 3 |
C has the fewest votes, a count of 3, and is eliminated. A benefits from that, gathering all the votes from C. Now, with 7 votes A wins against B with 6 votes.
Candidate | Votes in round | |
---|---|---|
1st | 2nd | |
A | 4 | 7 |
B | 6 | 6 |
C | 3 |
Result: A wins against B, after C has been eliminated.
Finally, the instant runoff winner of the complete set of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 8 |
B > A > C | 8 |
C > A > B | 3 |
C > B > A | 4 |
C has the fewest first preferences and so is eliminated first, its votes are split: 4 are transferred to B and 3 to A. Thus, B wins with 12 votes against 11 votes of A.
Candidate | Votes in round | |
---|---|---|
1st | 2nd | |
A | 8 | 11 |
B | 8 | 12 |
C | 7 |
Result: B wins against A, after C is eliminated.
A is the instant-runoff winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the instant-runoff winner. Thus, instant-runoff voting fails the consistency criterion.
This example shows that the Kemeny–Young method violates the consistency criterion. Assume three candidates A, B and C and 38 voters with the following preferences:
Group | Preferences | Voters |
---|---|---|
1st | A > B > C | 7 |
B > C > A | 6 | |
C > A > B | 3 | |
2nd | A > C > B | 8 |
B > A > C | 7 | |
C > B > A | 7 |
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the Kemeny-Young winner for the first group of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 7 |
B > C > A | 6 |
C > A > B | 3 |
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
Pairs of choices | Voters who prefer | |||
---|---|---|---|---|
X | Y | X over Y | Neither | Y over X |
A | B | 10 | 0 | 6 |
A | C | 7 | 0 | 9 |
B | C | 13 | 0 | 3 |
The ranking scores of all possible rankings are:
Preferences | 1 vs 2 | 1 vs 3 | 2 vs 3 | Total |
---|---|---|---|---|
A > B > C | 10 | 7 | 13 | 30 |
A > C > B | 7 | 10 | 3 | 20 |
B > A > C | 6 | 13 | 7 | 26 |
B > C > A | 13 | 6 | 9 | 28 |
C > A > B | 9 | 3 | 10 | 22 |
C > B > A | 3 | 9 | 6 | 18 |
Result: The ranking A > B > C has the highest ranking score. Thus, A wins ahead of B and C.
Now, the Kemeny-Young winner for the second group of voters is determined.
Preferences | Voters |
---|---|
A > C > B | 8 |
B > A > C | 7 |
C > B > A | 7 |
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
Pairs of choices | Voters who prefer | |||
---|---|---|---|---|
X | Y | X over Y | Neither | Y over X |
A | B | 8 | 0 | 14 |
A | C | 15 | 0 | 7 |
B | C | 7 | 0 | 15 |
The ranking scores of all possible rankings are:
Preferences | 1 vs 2 | 1 vs 3 | 2 vs 3 | Total |
---|---|---|---|---|
A > B > C | 8 | 15 | 7 | 30 |
A > C > B | 15 | 8 | 15 | 38 |
B > A > C | 14 | 7 | 15 | 36 |
B > C > A | 7 | 14 | 7 | 28 |
C > A > B | 7 | 15 | 8 | 30 |
C > B > A | 15 | 7 | 14 | 36 |
Result: The ranking A > C > B has the highest ranking score. Hence, A wins ahead of C and B.
Finally, the Kemeny-Young winner of the complete set of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 7 |
A > C > B | 8 |
B > A > C | 7 |
B > C > A | 6 |
C > A > B | 3 |
C > B > A | 7 |
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
Pairs of choices | Voters who prefer | |||
---|---|---|---|---|
X | Y | X over Y | Neither | Y over X |
A | B | 18 | 0 | 20 |
A | C | 22 | 0 | 16 |
B | C | 20 | 0 | 18 |
The ranking scores of all possible rankings are:
Preferences | 1 vs 2 | 1 vs 3 | 2 vs 3 | Total |
---|---|---|---|---|
A > B > C | 18 | 22 | 20 | 60 |
A > C > B | 22 | 18 | 18 | 58 |
B > A > C | 20 | 20 | 22 | 62 |
B > C > A | 20 | 20 | 16 | 56 |
C > A > B | 16 | 18 | 18 | 52 |
C > B > A | 18 | 16 | 20 | 54 |
Result: The ranking B > A > C has the highest ranking score. So, B wins ahead of A and C.
A is the Kemeny-Young winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Kemeny-Young winner. Thus, the Kemeny–Young method fails the reinforcement criterion.
The Kemeny-Young method satisfies ranking consistency; that is, if the electorate is divided arbitrarily into two parts and separate elections in each part result in the same ranking being selected, an election of the entire electorate also selects that ranking. In fact, it is the only Condorcet method that satisfies ranking consistency.
The Kemeny-Young score of a ranking is computed by summing up the number of pairwise comparisons on each ballot that match the ranking . Thus, the Kemeny-Young score for an electorate can be computed by separating the electorate into disjoint subsets (with ), computing the Kemeny-Young scores for these subsets and adding it up:
Now, consider an election with electorate . The premise of reinforcement is to divide the electorate arbitrarily into two parts , and in each part the same ranking is selected. This means, that the Kemeny-Young score for the ranking in each electorate is bigger than for every other ranking :
Now, it has to be shown, that the Kemeny-Young score of the ranking in the entire electorate is bigger than the Kemeny-Young score of every other ranking :
Thus, the Kemeny-Young method is consistent with respect to complete rankings.
This example shows that majority judgment violates reinforcement. Assume two candidates A and B and 10 voters with the following ratings:
Candidate | Voters | |
---|---|---|
A | B | |
Excellent | Fair | 3 |
Poor | Fair | 2 |
Fair | Poor | 3 |
Poor | Fair | 2 |
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the majority judgment winner for the first group of voters is determined.
Candidates | Voters | |
---|---|---|
A | B | |
Excellent | Fair | 3 |
Poor | Fair | 2 |
The sorted ratings would be as follows:
Candidate |
| |||
A | ||||
B | ||||
Excellent Good Fair Poor |
Result: With the votes of the first group of voters, A has the median rating of "Excellent" and B has the median rating of "Fair". Thus, A is elected majority judgment winner by the first group of voters.
Now, the majority judgment winner for the second group of voters is determined.
Candidates | Voters | |
---|---|---|
A | B | |
Fair | Poor | 3 |
Poor | Fair | 2 |
The sorted ratings would be as follows:
Candidate |
| |||
A | ||||
B | ||||
Excellent Good Fair Poor |
Result: Taking only the votes of the second group in account, A has the median rating of "Fair" and B the median rating of "Poor". Thus, A is elected majority judgment winner by the second group of voters.
Finally, the majority judgment winner of the complete set of voters is determined.
Candidates | Voters | |
---|---|---|
A | B | |
Excellent | Fair | 3 |
Fair | Poor | 3 |
Poor | Fair | 4 |
The sorted ratings would be as follows:
Candidate |
| |||
A | ||||
B | ||||
Excellent Good Fair Poor |
The median ratings for A and B are both "Fair". Since there is a tie, "Fair" ratings are removed from both, until their medians become different. After removing 20% "Fair" ratings from the votes of each, the sorted ratings are now:
Candidate |
| |||||
A | ||||||
B |
Result: Now, the median rating of A is "Poor" and the median rating of B is "Fair". Thus, B is elected majority judgment winner.
A is the majority judgment winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Majority Judgment winner. Thus, Majority Judgment fails the consistency criterion.
This example shows that the ranked pairs method violates the consistency criterion. Assume three candidates A, B and C with 39 voters with the following preferences:
Preferences | Voters |
---|---|
A > B > C | 7 |
B > C > A | 6 |
C > A > B | 3 |
A > C > B | 9 |
B > A > C | 8 |
C > B > A | 6 |
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the ranked pairs winner for the first group of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 7 |
B > C > A | 6 |
C > A > B | 3 |
The results would be tabulated as follows:
X | ||||
A | B | C | ||
Y | A | [X] 6 [Y] 10 | [X] 9 [Y] 7 | |
B | [X] 10 [Y] 6 | [X] 3 [Y] 13 | ||
C | [X] 7 [Y] 9 | [X] 13 [Y] 3 | ||
Pairwise election results (won-tied-lost): | 1–0–1 | 1–0–1 | 1–0–1 |
The sorted list of victories would be:
Pair | Winner |
---|---|
B (13) vs C (3) | B 13 |
A (10) vs B (6) | A 10 |
A (7) vs C (9) | C 9 |
Result: B > C and A > B are locked in first (and C > A can't be locked in after that), so the full ranking is A > B > C. Thus, A is elected ranked pairs winner by the first group of voters.
Now, the ranked pairs winner for the second group of voters is determined.
Preferences | Voters |
---|---|
A > C > B | 9 |
B > A > C | 8 |
C > B > A | 6 |
The results would be tabulated as follows:
X | ||||
A | B | C | ||
Y | A | [X] 14 [Y] 9 | [X] 6 [Y] 17 | |
B | [X] 9 [Y] 14 | [X] 15 [Y] 8 | ||
C | [X] 17 [Y] 6 | [X] 8 [Y] 15 | ||
Pairwise election results (won-tied-lost): | 1–0–1 | 1–0–1 | 1–0–1 |
The sorted list of victories would be:
Pair | Winner |
---|---|
A (17) vs C (6) | A 17 |
B (8) vs C (15) | C 15 |
A (9) vs B (14) | B 14 |
Result: Taking only the votes of the second group in account, A > C and C > B are locked in first (and B > A can't be locked in after that), so the full ranking is A > C > B. Thus, A is elected ranked pairs winner by the second group of voters.
Finally, the ranked pairs winner of the complete set of voters is determined.
Preferences | Voters |
---|---|
A > B > C | 7 |
A > C > B | 9 |
B > A > C | 8 |
B > C > A | 6 |
C > A > B | 3 |
C > B > A | 6 |
The results would be tabulated as follows:
X | ||||
A | B | C | ||
Y | A | [X] 20 [Y] 19 | [X] 15 [Y] 24 | |
B | [X] 19 [Y] 20 | [X] 18 [Y] 21 | ||
C | [X] 24 [Y] 15 | [X] 21 [Y] 18 | ||
Pairwise election results (won-tied-lost): | 1–0–1 | 2–0–0 | 0–0–2 |
The sorted list of victories would be:
Pair | Winner |
---|---|
A (25) vs C (15) | A 24 |
B (21) vs C (18) | B 21 |
A (19) vs B (20) | B 20 |
Result: Now, all three pairs (A > C, B > C and B > A) can be locked in without a cycle. The full ranking is B > A > C. Thus, ranked pairs chooses B as winner, which is the Condorcet winner, due to the lack of a cycle.
A is the ranked pairs winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the ranked pairs winner. Thus, the ranked pairs method fails the consistency criterion.
In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.
A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.
Arrow's impossibility theorem is a key result in social choice theory, showing that no rank-based decision rule can satisfy a mathematical standard of rational behavior codified by decision theory. Most notably, it shows that no (non-degenerate) rule can satisfy Independence of irrelevant alternatives, the principle that a choice between two alternatives should not depend on the quality of some third, unrelated option C. Kenneth Arrow published the theorem in 1950.
The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.
Independence of irrelevant alternatives (IIA) is a major axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, cognitive science, social choice, fair division, rational choice, artificial intelligence, probability, and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.
Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system.
In an election, a candidate is called a majority winner or majority-preferred candidate if more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.
In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.
The majority favorite criterion is a voting system criterion that says that, if a candidate would win more than half the vote in a first-preference plurality election, that candidate should win. Equivalently, if only one candidate is ranked first by a over 50% of voters, that candidate must win. It is occasionally referred to simply as the "majority criterion", but this term is more often used to refer to Condorcet's majority-rule principle.
In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.
In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) number of votes in their worst (minimum) matchup is declared the winner.
The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.
Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.
In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a very weak form of the independence of irrelevant alternatives (IIA) criterion.
The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.
Schulze STV is a draft single transferable vote (STV) ranked voting system designed to achieve proportional representation. It was invented by Markus Schulze, who developed the Schulze method for resolving ties using a Condorcet method. Schulze STV is similar to CPO-STV in that it compares possible winning candidate pairs and selects the Condorcet winner. It is not used in parliamentary elections.
Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It is a kind of highest median rule, a cardinal voting system that elects the candidate with the highest median rating.
There are a number of different criteria which can be used for voting systems in an election, including the following
The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.
A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.