Positional voting

Last updated

Positional voting is a ranked voting electoral system in which the options or candidates receive points based on their rank position on each ballot and the one with the most points overall wins. [1] The lower-ranked preference in any adjacent pair is generally of less value than the higher-ranked one. Although it may sometimes be weighted the same, it is never worth more. A valid progression of points or weightings may be chosen at will (Eurovision Song Contest) or it may form a mathematical sequence such as an arithmetic progression (Borda count), a geometric one (positional number system) or a harmonic one (Nauru/Dowdall method). The set of weightings employed in an election heavily influences the rank ordering of the candidates. The steeper the initial decline in preference values with descending rank, the more polarised and less consensual the positional voting system becomes.

Contents

Positional voting should be distinguished from score voting: in the former, the score that each voter gives to each candidate is uniquely determined by the candidate's rank; in the latter, each voter is free to give any score to any candidate.

Voting and counting

In positional voting, voters complete a ranked ballot by expressing their preferences in rank order. The rank position of each voter preference is allotted a specific fixed weighting. Typically, the higher the rank of the preference, the more points it is worth. Occasionally, it may share the same weighting as a lower-ranked preference but it is never worth fewer points.

Usually, every voter is required to express a unique ordinal preference for each option on the ballot in strict descending rank order. However, a particular positional voting system may permit voters to truncate their preferences after expressing one or more of them and to leave the remaining options unranked and consequently worthless. Similarly, some other systems may limit the number of preferences that can be expressed. For example, in the Eurovision Song Contest only their top ten preferences are ranked by each country although many more than ten songs compete in the contest. Again, unranked preferences have no value. In positional voting, ranked ballots with tied options are normally considered as invalid.

The counting process is straightforward. All the preferences cast by voters are awarded the points associated with their rank position. Then, all the points for each option are tallied and the one with the most points is the winner. Where a few winners (W) are instead required following the count, the W highest-ranked options are selected. Positional voting is not only a means of identifying a single winner but also a method for converting sets of individual preferences (ranked ballots) into one collective and fully rank-ordered set. It is possible and legitimate for options to be tied in this resultant set; even in first place.

Example

Consider a positional voting election for choosing a single winner from three options A, B and C. No truncation or ties are permitted and a first, second and third preference is here worth 4, 2 and 1 point respectively. There are then six different ways in which each voter may rank order these options. The 100 voters cast their ranked ballots as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
24ABC
18ACB
12BAC
16BCA
20CAB
10CBA

After voting closes, the points awarded by the voters are then tallied and the options ranked according to the points total.

OptionPoints to be talliedTotalOverall rank
A(24 + 18) x 4 + (12 + 20) x 2 + (16 + 10) x 1258First
B(12 + 16) x 4 + (24 + 10) x 2 + (18 + 20) x 1218Third
C(20 + 10) x 4 + (18 + 16) x 2 + (24 + 12) x 1224Second

Therefore, having the highest tally, option A is the winner here. Note that the election result also generates a full ranking of all the options.

Point distributions

For positional voting, any distribution of points to the rank positions is valid, so long as the points are weakly decreasing in the rank of each candidate. In other words, a worse-ranked candidate must receive fewer points than a better-ranked candidate. [1]

Borda (Unbiased)

The classic example of a positional voting electoral system is the Borda count. [1] Typically, for a single-winner election with N candidates, a first preference is worth N points, a second preference N – 1 points, a third preference N – 2 points and so on until the last (Nth) preference that is worth just 1 point. So, for example, the points are respectively 4, 3, 2 and 1 for a four-candidate election.

Mathematically, the point value or weighting (wn) associated with a given rank position (n) is defined below; where the weighting of the first preference is a and the common difference is d.

where a = N, the number of candidates.

The value of the first preference need not be N. It is sometimes set to N – 1 so that the last preference is worth zero. Although it is convenient for counting, the common difference need not be fixed at one since the overall ranking of the candidates is unaffected by its specific value. Hence, despite generating differing tallies, any value of a or d for a Borda count election will result in identical candidate rankings. [1]

The consecutive Borda count weightings form an arithmetic progression.

Top-heavy

Common systems for evaluating preferences, other than Borda, are typically "top-heavy". In other words, the method focuses on how many voters consider a candidate one of their "favourites".

Plurality voting

Under first-preference plurality (FPP), the most-preferred option receives 1 point while all other options receive 0 points each. This is the most top-heavy positional voting system.

Geometric

An alternative mathematical sequence known as a geometric progression may also be used in positional voting. Here, there is instead a common ratio r between adjacent weightings. In order to satisfy the two validity conditions, the value of r must be less than one so that weightings decrease as preferences descend in rank. Where the value of the first preference is a, the weighting (wn) awarded to a given rank position (n) is defined below.

For example, the sequence of consecutively halved weightings of 1, 1/2, 1/4, 1/8, … as used in the binary number system constitutes a geometric progression with a common ratio of one-half (r = 1/2). Such weightings are inherently valid for use in positional voting systems provided that a legitimate common ratio is employed. Using a common ratio of zero, this form of positional voting has weightings of 1, 0, 0, 0, … and so produces ranking outcomes identical to that for first-past-the-post or plurality voting.

Dowdall system (Nauru)

Alternatively, the denominators of the above fractional weightings could form an arithmetic progression instead; namely 1/1, 1/2, 1/3, 1/4 and so on down to 1/N. This further mathematical sequence is an example of a harmonic progression. These particular descending rank-order weightings are in fact used in N-candidate positional voting elections to the Nauru parliament. [2] [3] For such electoral systems, the weighting (wn) allocated to a given rank position (n) is defined below; where the value of the first preference is a.

where w1 = a.

For the Nauru system, the first preference a is worth one and the common difference d between adjacent denominators is also one. Numerous other harmonic sequences can also be used in positional voting. For example, setting a to 1 and d to 2 generates the reciprocals of all the odd numbers (1, 1/3, 1/5, 1/7, …) whereas letting a be 1/2 and d be 1/2 produces those of all the even numbers (1/2, 1/4, 1/6, 1/8, …).

The harmonic variant used by the island nation of Nauru is called the Dowdall system as it was devised by Nauru's Secretary for Justice (Desmond Dowdall) in 1971. [4] [5] Here, each voter awards the first-ranked candidate with 1 point, while the 2nd-ranked candidate receives 12 a point, the 3rd-ranked candidate receives 13 of a point, etc. When counting candidate tallies in Nauru, decimal numbers rounded to three places after the decimal point are employed rather than fractions. (This system should not be confused with the use of sequential divisors in proportional systems such as proportional approval voting, an unrelated method.) A similar system of weighting lower-preference votes was used in the 1925 Oklahoma primary electoral system.

For a four-candidate election, the Dowdall point distribution would be this:

RankingCandidateFormulaPoints
1stAndrew1/11.000
2ndBrian1/20.500
3rdCatherine1/30.333
4thDavid1/40.250

This method is more favourable to candidates with many first preferences than the conventional Borda count. It has been described as a system "somewhere between plurality and the Borda count, but as veering more towards plurality". [5] Simulations show that 30% of Nauru elections would produce different outcomes if counted using standard Borda rules. [5]

Eurovision

The Eurovision Song Contest uses a first preference worth 12 points, while a second one is given 10 points. The next eight consecutive preferences are awarded 8, 7, 6, 5, 4, 3, 2 and 1 point. All remaining preferences receive zero points.

Comparison of progression types

In positional voting, the weightings (w) of consecutive preferences from first to last decline monotonically with rank position (n). However, the rate of decline varies according to the type of progression employed. Lower preferences are more influential in election outcomes where the chosen progression employs a sequence of weightings that descend relatively slowly with rank position. The more slowly weightings decline, the more consensual and less polarising positional voting becomes.

Relative decline in preference weightings with descending rank order for four positional voting electoral systems Positional Voting Progressions.png
Relative decline in preference weightings with descending rank order for four positional voting electoral systems

This figure illustrates such declines over ten preferences for the following four positional voting electoral systems:

To aid comparison, the actual weightings have been normalised; namely that the first preference is set at one and the other weightings in the particular sequence are scaled by the same factor of 1/a.

The relative decline of weightings in any arithmetic progression is constant as it is not a function of the common difference d. In other words, the relative difference between adjacent weightings is fixed at 1/N. In contrast, the value of d in a harmonic progression does affect the rate of its decline. The higher its value, the faster the weightings descend. Whereas the lower the value of the common ratio r for a geometric progression, the faster its weightings decline.

The weightings of the digit positions in the binary number system were chosen here to highlight an example of a geometric progression in positional voting. In fact, the consecutive weightings of any digital number system can be employed since they all constitute geometric progressions. For example, the binary, ternary, octal and decimal number systems use a radix R of 2, 3, 8 and 10 respectively. The value R is also the common ratio of the geometric progression going up in rank order while r is the complementary common ratio descending in rank. Therefore, r is the reciprocal of R and the r ratios are respectively 1/2, 1/3, 1/8 and 1/10 for these positional number systems when employed in positional voting.

As it has the smallest radix, the rate of decline in preference weightings is slowest when using the binary number system. Although the radix R (the number of unique digits used in the number system) has to be an integer, the common ratio r for positional voting does not have to be the reciprocal of such an integer. Any value between zero and just less than one is valid. For a slower descent of weightings than that generated using the binary number system, a common ratio greater than one-half must be employed. The higher the value of r, the slower the decrease in weightings with descending rank.

Analysis of non-ranking systems

Although not categorised as positional voting electoral systems, some non-ranking methods can nevertheless be analysed mathematically as if they were by allocating points appropriately. [1] Given the absence of strict monotonic ranking here, all favoured options are weighted identically with a high value and all the remaining options with a common lower value. The two validity criteria for a sequence of weightings are hence satisfied.

For an N-candidate ranked ballot, let the permitted number of favoured candidates per ballot be F and the two weightings be one point for these favoured candidates and zero points for those not favoured. When analytically represented using positional voting, favoured candidates must be listed in the top F rank positions in any order on each ranked ballot and the other candidates in the bottom N-F rank positions. This is essential as the weighting of each rank position is fixed and common to each and every ballot in positional voting.

Unranked single-winner methods that can be analysed as positional voting electoral systems include:

And unranked methods for multiple-winner elections (with W winners) include:

In approval voting, voters are free to favour as many or as few candidates as they wish so F is not fixed but varies according to the individual ranked ballots being cast. As rank positions would then have different weightings on different ballots, approval voting is not a positional voting system; nor can it be analysed as such.

Comparative examples

Tennessee map for voting example.svg

Suppose that Tennessee is holding an election on the location of its capital. The population is concentrated around four major cities. All voters want the capital to be as close to them as possible. The options are:

The preferences of each region's voters are:

42% of voters
Far-West
26% of voters
Center
15% of voters
Center-East
17% of voters
Far-East
  1. Memphis
  2. Nashville
  3. Chattanooga
  4. Knoxville
  1. Nashville
  2. Chattanooga
  3. Knoxville
  4. Memphis
  1. Chattanooga
  2. Knoxville
  3. Nashville
  4. Memphis
  1. Knoxville
  2. Chattanooga
  3. Nashville
  4. Memphis

Where wn is the weighting of the nth preference, the following table defines the resultant tally calculation for each city:

Voters' home cityVote tally per 1200 voters
Memphis(42w1 + 26w4 + 15w4 + 17w4) x 1200/100
Nashville(42w2 + 26w1 + 15w3 + 17w3) x 1200/100
Chattanooga(42w3 + 26w2 + 15w1 + 17w2) x 1200/100
Knoxville(42w4 + 26w3 + 15w2 + 17w1) x 1200/100

For a first preference worth w1 = 1, the table below states the value of each of the four weightings for a range of different positional voting systems that could be employed for this election:

Voting systemw1w2w3w4Sum
Plurality10001
Binary number system11/21/41/81.875
Nauru method11/21/31/42.083
Borda count13/41/21/42.5
Anti-plurality11103

These five positional voting systems are listed in progression type order. The slower the decline in weighting values with descending rank order, the greater is the sum of the four weightings; see end column. Plurality declines the fastest while anti-plurality is the slowest.

For each positional voting system, the tallies for each of the four city options are determined from the above two tables and stated below:

Voting systemMemphisNashvilleChattanoogaKnoxville
Plurality504312180204
Binary number system591660564435
Nauru method678692606524
Borda count678882819621
Anti-plurality50412001200696

For each potential positional voting system that could be used in this election, the consequent overall rank order of the options is shown below:

Voting systemFirst placeSecond placeThird placeFourth place
PluralityMemphisNashvilleKnoxvilleChattanooga
Binary number systemNashvilleMemphisChattanoogaKnoxville
Nauru methodNashvilleMemphisChattanoogaKnoxville
Borda countNashvilleChattanoogaMemphisKnoxville
Anti-pluralityChattanooga / NashvilleKnoxvilleMemphis

This table highlights the importance of progression type in determining the winning outcome. With all voters either strongly for or against Memphis, it is a very ‘polarized’ option so Memphis finishes first under plurality and last with anti-plurality. Given its central location, Nashville is the ‘consensus’ option here. It wins under the Borda count and the two other non-polarized systems

Evaluation against voting system criteria

As a class of voting systems, positional voting can be evaluated against objective mathematical criteria to evaluate its strengths and weaknesses in comparison with other single-winner electoral methods.

Positional voting satisfies the following criteria:

But it fails to satisfy the following criteria:

According to Arrow’s impossibility theorem, no ranked voting system can satisfy all of the following four criteria when collectively ranking three or more alternatives:

Prior to voter preferences being cast, voting systems that treat all voters as equals and all candidates as equals pass the first two criteria above. So, like any other ranking system, positional voting cannot pass both of the other two. It is Pareto efficient but is not independent of irrelevant alternatives. This failure means that the addition or deletion of a non-winning (irrelevant) candidate may alter who wins the election despite the ranked preferences of all voters remaining the same.

IIA example

Consider a positional voting election with three candidates A, B and C where a first, second and third preference is worth 4, 2 and 1 point respectively. The 12 voters cast their ranked ballots as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
5ABC
4BCA
3CAB

The election outcome is hence:

CandidatePoints to be talliedTotalOverall rank
A(5 x 4) + (3 x 2) + (4 x 1)30First
B(4 x 4) + (5 x 2) + (3 x 1)29Second
C(3 x 4) + (4 x 2) + (5 x 1)25Third

Therefore, candidate A is the single winner and candidates B and C are the two losers. As an irrelevant alternative (loser), whether B enters the contest or not should make no difference to A winning provided the voting system is IIA compliant.

Rerunning the election without candidate B while maintaining the correct ranked preferences for A and C, the 12 ballots are now cast as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
5AC-
4CA-
3CA-

The rerun election outcome is now:

CandidatePoints to be talliedTotalOverall rank
A(5 x 4) + (7 x 2)34Second
C(7 x 4) + (5 x 2)38First

Given the withdrawal of candidate B, the winner is now C and no longer A. Regardless of the specific points awarded to the rank positions of the preferences, there are always some cases where the addition or deletion of an irrelevant alternative alters the outcome of an election. Hence, positional voting is not IIA compliant.

IoC example

Positional voting also fails the independence of clones (IoC) criterion. The strategic nomination of clones is quite likely to significantly affect the outcome of an election and it is often the intention behind doing so. A clone is a nominally identical candidate to one already standing where voters are unable to distinguish between them unless informed as to which of the two is the clone. As tied rankings are not permitted, these two candidates must be ranked by voters in adjacent positions instead. Cloning may well promote or demote the collective ranking of any non-cloned candidate.

Consider a positional voting election in which three candidates may compete. There are just 12 voters and a first, second and third preference is worth 4, 2 and 1 point respectively.

In this first scenario, two candidates A and B are nominated but no clone enters the contest. The voters cast their ranked ballots as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
6AB-
6BA-

The election outcome is hence:

CandidatePoints to be talliedTotalOverall rank
A(6 x 4) + (6 x 2)36First equal
B(6 x 4) + (6 x 2)36First equal

Given equal support, there is an evitable tie for first place between A and B.

Suppose B, anticipating this tie, decided to enter a clone of itself. The nominated candidates are now A, B1 and B2. As the voters are unable to distinguish between B1 and B2, they are just a likely to rank B1 over B2 as to prefer B2 over B1. In this second scenario, the 12 ballots are now cast as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
3AB1B2
3AB2B1
3B1B2A
3B2B1A

The new election outcome is now:

CandidatePoints to be talliedTotalOverall rank
A(6 x 4) + (0 x 2) + (6 x 1)30First
B1(3 x 4) + (6 x 2) + (3 x 1)27Second equal
B2(3 x 4) + (6 x 2) + (3 x 1)27Second equal

By adding a clone of itself, B has handed victory to candidate A. This counter-productive ‘spoiler’ effect or act of self-harm is called vote-splitting.

To promote itself into first place, B should instead instruct all its supporters to always prefer one of its candidates (say B1) over the other (B2). In this third scenario, the 12 ballots are now cast as follows:

Number of ballotsFirst preferenceSecond preferenceThird preference
3AB1B2
3AB2B1
6B1B2A

The revised election outcome is now:

CandidatePoints to be talliedTotalOverall rank
A(6 x 4) + (0 x 2) + (6 x 1)30Second
B1(6 x 4) + (3 x 2) + (3 x 1)33First
B2(0 x 4) + (9 x 2) + (3 x 1)21Third

By ‘team’ B signalling to its own supporters - but not to A supporters - which of its two candidates it wants to win, B has achieved its objective of gaining victory for B1. With no clone, A and B tie with equal numbers of first and second preferences. The introduction of clone B2 (an irrelevant alternative) has pushed the second preferences for A into third place while preferences for ‘team’ B (B or B1) are unchanged in the first and third scenarios. This wilful act to ‘bury’ A and promote itself is called teaming. Note that if A signals to its own supporters to always prefer B2 over B1 in a tit-for-tat retaliation then the original tie between A and ‘team’ B is re-established.

To a greater or lesser extent, all positional voting systems are vulnerable to teaming; with the sole exception of a plurality-equivalent one. As only first preferences have any value, employing clones to ‘bury’ opponents down in rank never affects election outcomes. However, precisely because only first preferences have any value, plurality is instead particularly susceptible to vote-splitting. To a lesser extent, many other positional voting systems are also affected by ‘spoiler’ candidates. While inherently vulnerable to teaming, the Borda count is however invulnerable to vote-splitting. [1]

Notes

Donald G. Saari has published various works that mathematically analyse positional voting electoral systems. The fundamental method explored in his analysis is the Borda count.

Related Research Articles

<span class="mw-page-title-main">Plurality voting</span> Type of electoral system

Plurality voting refers to electoral systems in which the candidates in an electoral district who poll more than any other are elected.

<span class="mw-page-title-main">Single transferable vote</span> Multi-winner electoral system

The single transferable vote (STV) or proportional-ranked choice voting (P-RCV), is a multi-winner electoral system in which each voter casts a single vote in the form of a ranked ballot. Voters have the option to rank candidates, and their vote may be transferred according to alternative preferences if their preferred candidate is eliminated or elected with surplus votes, so that their vote is used to elect someone they prefer over others in the running. STV aims to approach proportional representation based on votes cast in the district where it is used, so that each vote is worth about the same as another.

<span class="mw-page-title-main">Voting</span> Method to make collective decisions

Voting refers to the process of choosing officials or policies by casting a ballot, a document used by people to formally express their preferences. Republics and representative democracies are governments where the population chooses representatives by voting.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

Strategic nomination refers to the entry of a candidate into an election with the intention of changing the ranking of other candidates. The name is an echo of ‘tactical voting’ and is intended to imply that it is the candidates rather than the voters who are seeking to manipulate the result in a manner unfaithful to voters’ true preferences.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">Elections in Nauru</span>

Nauru elects on a national level a head of state and a legislature. Parliament has 19 members, elected for a three-year term in multi-seat constituencies. The president is elected for a three-year term by the parliament.

<span class="mw-page-title-main">Majority winner criterion</span> Property of electoral systems

The majority criterion is a winner-takes-all voting system criterion that says that, if only one candidate is ranked first by over 50% of voters, that candidate must win.

The single transferable vote (STV) is a proportional representation system that elects multiple winners. It is one of several ways of choosing winners from ballots that rank candidates by preference. Under STV, an elector's vote is initially allocated to their first-ranked candidate. Candidates are elected (winners) if their vote tally reaches quota. After the winners in the first count are determined, if seats are still open, surplus votes — those in excess of an electoral quota— are transferred from winners to the remaining candidates (hopefuls) according to the surplus ballots' next usable back-up preference.

<span class="mw-page-title-main">Nanson's method</span> Single-winner electoral system

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

<span class="mw-page-title-main">Best-is-worst paradox</span> Same candidate placing first and last in a race

In social choice theory, the best-is-worst paradox occurs when a voting rule declares the same candidate to be both the best and worst possible winner. The worst candidate can be identified by reversing each voter's ballot, then applying the voting rule to the reversed ballots find a new "anti-winner".

Woodall'splurality criterion is a voting criterion for ranked voting. It is stated as follows:

<span class="mw-page-title-main">Independence of clones criterion</span> Property of electoral systems

In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a weak form of the independence of irrelevant alternatives (IIA) criterion that nevertheless is failed by a number of voting rules. A method that passes the criterion is said to be clone independent.

<span class="mw-page-title-main">Summability criterion</span>

In election science, a voting method satisfies the summability criterion if it is possible to tally election results locally by precinct, then calculate the results by adding up all the votes. More formally, the compilation or summation complexity of a voting system measures the difficulty of vote counting for individual precincts, and is equal to the smallest number of bits needed to summarize all the votes. A voting method is called summable if the number of bits grows as a polynomial function of the number of candidates.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV), is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoff elections. In each round, the last-place finisher according to a plurality vote is eliminated, and the votes supporting the eliminated choice are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system

<span class="mw-page-title-main">Electoral system</span> Method by which voters make a choice between options

An electoral or voting system is a set of rules used to determine the results of an election. Electoral systems are used in politics to elect governments, while non-political elections may take place in business, non-profit organisations and informal organisations. These rules govern all aspects of the voting process: when elections occur, who is allowed to vote, who can stand as a candidate, how ballots are marked and cast, how the ballots are counted, how votes translate into the election outcome, limits on campaign spending, and other factors that can affect the result. Political electoral systems are defined by constitutions and electoral laws, are typically conducted by election commissions, and can use multiple types of elections for different offices.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.

There are a number of different criteria which can be used for voting systems in an election, including the following

<span class="mw-page-title-main">Round-robin voting</span> Voting systems using paired comparisons

Round-robin, pairedcomparison, or tournamentvoting methods, are a set of ranked voting systems that choose winners by comparing every pair of candidates one-on-one, similar to a round-robin tournament. In each paired matchup, we record the total number of voters who prefer each candidate in a beats matrix. Then, a majority-preferred (Condorcet) candidate is elected, if one exists. Otherwise, if there is a cyclic tie, the candidate "closest" to being a Condorcet winner is elected, based on the recorded beats matrix. How "closest" is defined varies by method.

References

  1. 1 2 3 4 5 6 Saari, Donald G. (1995). Basic Geometry of Voting. Springer-Verlag. pp. 101–103. ISBN   3-540-60064-7.
  2. "2019 Parliamentary Election Final Report" (PDF). NAOERO Electoral Commission. Retrieved 4 November 2024.
  3. "2022 Parliamentary Election Final Report" (PDF). NAOERO Electoral Commission. Retrieved 4 November 2024.
  4. Reilly, Benjamin (2002). "Social Choice in the South Seas: Electoral Innovation and the Borda Count in the Pacific Island Countries". International Political Science Review. 23 (4): 364–366. CiteSeerX   10.1.1.924.3992 . doi:10.1177/0192512102023004002. S2CID   3213336.
  5. 1 2 3 Fraenkel, Jon; Grofman, Bernard (2014-04-03). "The Borda Count and its real-world alternatives: Comparing scoring rules in Nauru and Slovenia". Australian Journal of Political Science. 49 (2): 186–205. doi:10.1080/10361146.2014.900530. S2CID   153325225.