Best-is-worst paradox

Last updated

In social choice theory, the best-is-worst paradox occurs when a voting rule declares the same candidate to be both the best and worst possible winner. The worst candidate can be identified by reversing each voter's ballot (to rank candidates from worst-to-best), then applying the voting rule to the reversed ballots find a new "anti-winner". [1] [2]

Contents

Rules that never exhibit a best-is-worst paradox are said to satisfy the reversal criterion, which states that if every voter's opinions on each candidate are perfectly reversed (i.e. they rank candidates from worst to best), the outcome of the election should be reversed as well, meaning the first- and last- place finishers should switch places. [2] In other words, the results of the election should not depend arbitrarily on whether voters rank candidates from best to worst (and then select the best candidate), or whether we ask them to rank candidates from worst to best (and then select the least-bad candidate).

Methods that satisfy reversal symmetry include the Borda count, ranked pairs, Kemeny–Young, and Schulze. Most rated voting systems, including approval and score voting, satisfy the criterion as well. Best-is-worst paradoxes can occur in ranked-choice runoff voting (RCV) and minimax. A well-known example is the 2022 Alaska special election, where candidate Mary Peltola was both the winner and anti-winner.

Examples

Instant-runoff voting

Consider a preferential system where 11 voters express their preferences as:

With the Borda count A would get 23 points (5×3+4×1+2×2), B would get 24 points, and C would get 19 points, so B would be elected. In instant-runoff, C would be eliminated in the first round and A would be elected in the second round by 7 votes to 4.

Now reversing the preferences:

With the Borda count A would get 21 points (5×1+4×3+2×2), B would get 20 points, and C would get 25 points, so this time C would be elected. In instant-runoff, B would be eliminated in the first round and A would as before be elected in the second round, this time by 6 votes to 5.

Minimax

This example shows that the Minimax method violates the Reversal symmetry criterion. Assume four candidates A, B, C and D with 14 voters with the following preferences:

# of votersPreferences
4A > B > D > C
4B > C > A > D
2C > D > A > B
1D > A > B > C
1D > B > C > A
2D > C > A > B

Since all preferences are strict rankings (no equals are present), all three Minimax methods (winning votes, margins and pairwise opposite) elect the same winners.

Now, the winners are determined for the normal and the reversed order.

Normal order

# of votersPreferences
4A > B > D > C
4B > C > A > D
2C > D > A > B
1D > A > B > C
1D > B > C > A
2D > C > A > B

The results would be tabulated as follows:

Pairwise election results
X
ABCD
YA[X] 5
[Y] 9
[X] 9
[Y] 5
[X] 6
[Y] 8
B[X] 9
[Y] 5
[X] 4
[Y] 10
[X] 6
[Y] 8
C[X] 5
[Y] 9
[X] 10
[Y] 4
[X] 8
[Y] 6
D[X] 8
[Y] 6
[X] 8
[Y] 6
[X] 6
[Y] 8
Pairwise election results (won-tied-lost):2-0-12-0-11-0-21-0-2
worst pairwise defeat (winning votes):99108
worst pairwise defeat (margins):4462
worst pairwise opposition:99108
  • [X] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
  • [Y] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption

Result: The candidates A, B, and C form a cycle with clear defeats. D benefits from that since its two losses are relatively close and therefore D's biggest defeat is the closest of all candidates. Thus, D is elected Minimax winner.

Reversed order

# of votersPreferences
4C > D > B > A
4D > A > C > B
2B > A > D > C
1C > B > A > D
1A > C > B > D
2B > A > C > D

The results would be tabulated as follows:

Pairwise election results
X
ABCD
YA[X] 9
[Y] 5
[X] 5
[Y] 9
[X] 8
[Y] 6
B[X] 5
[Y] 9
[X] 10
[Y] 4
[X] 8
[Y] 6
C[X] 9
[Y] 5
[X] 4
[Y] 10
[X] 6
[Y] 8
D[X] 6
[Y] 8
[X] 6
[Y] 8
[X] 8
[Y] 6
Pairwise election results (won-tied-lost):1-0-21-0-22-0-12-0-1
worst pairwise defeat (winning votes):91098
worst pairwise defeat (margins):4642
worst pairwise opposition:91098

Result: The candidates A, B, and C still form a cycle with clear defeats. Therefore D's biggest defeat is the closest of all candidates, and D is elected Minimax winner.

Conclusion

D is the Minimax winner using the normal preference order and also using the ballots with reversed preference orders. Thus, Minimax fails the Reversal symmetry criterion.

Plurality voting

This example shows that plurality voting violates the Reversal symmetry criterion. Assume three candidates A, B and C and 4 voters with the following preferences:

# of votersPreferences
1A > B > C
1C > B > A
1B > A > C
1C > A > B

Note that reversing all the ballots, leads to the same set of ballots, since the reversed preference order of the first voter resembles the preference order of the second, and similarly with the third and fourth.

In the following the Plurality winner is determined. Plurality ballots only contain the single favorite:

# of votersFavorite
1A
1B
2C

Result: The candidates A and B receive 1 vote each, candidate C receives a plurality of 2 votes (50%). Thus, C is elected Plurality winner.

C is the Plurality winner using the normal ballots and also using the reversed ballot. Thus, Plurality fails the Reversal symmetry criterion.

Note, that every voting system that satisfies the Reversal symmetry criterion, would have to lead to a tie in this example (as in every example in which the set of reversed ballots is the same as the set of normal ballots).

STAR voting

This example shows STAR violates the reversal symmetry criterion. In a score ballot, reversed score is calculated as the maximum possible score minus the normal score.

Normal score

Given a 3-candidate election between candidates A, B, and C:

CandidateBallots
A55222
B00333
C11204

The results are tabulated below:

CandidateTotal ScorePreferred vs
ABC
A16--23
B93--2
C813--

Result: In the election, candidates A and B have the highest scores, and advance to the runoff round. B wins being preferred over A 3 votes to 2.

Reversed score

Reversing the ballots by subtracting each score from 5 (the maximum score in STAR) gives the following:

CandidateBallots
A00333
B55222
C44351

The results are tabulated below:

CandidateTotal ScorePreferred vs
ABC
A9--31
B162--3
C1732--

Result: In the reversed ballots, B and C have the highest total score, and B wins being preferred to C 3 votes to 2.

Related Research Articles

<span class="mw-page-title-main">Approval voting</span> Single-winner electoral system

Approval voting is a single-winner electoral system in which voters mark all the candidates they support, instead of just choosing one. The candidate with the highest approval rating is elected. Approval voting is currently in use for government elections in St. Louis, Missouri, Fargo, North Dakota and in the United Nations to elect the Secretary General.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

In an election, a candidate is called a majority winner or majority-preferred candidate if more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">No-show paradox</span> When voting for a candidate makes them lose

In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.

<span class="mw-page-title-main">Majority favorite criterion</span> Property of electoral systems

The majority favorite criterion is a voting system criterion that says that, if a candidate would win more than half the vote in a first-preference plurality election, that candidate should win. Equivalently, if only one candidate is ranked first by a over 50% of voters, that candidate must win. It is occasionally referred to simply as the "majority criterion", but this term is more often used to refer to Condorcet's majority-rule principle.

<span class="mw-page-title-main">Multiple districts paradox</span> Property of electoral systems

A voting system satisfies join-consistency if combining two sets of votes, both electing A over B, always results in a combined electorate that ranks A over B. It is a stronger form of the participation criterion. Systems that fail the consistency criterion are susceptible to the multiple-district paradox, which allows for a particularly egregious kind of gerrymander: it is possible to draw boundaries in such a way that a candidate who wins the overall election fails to carry even a single electoral district.

<span class="mw-page-title-main">Nanson's method</span> Single-winner electoral system

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

<span class="mw-page-title-main">Minimax Condorcet method</span> Single-winner ranked-choice voting system

In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) number of votes in their worst (minimum) matchup is declared the winner.

<span class="mw-page-title-main">Positional voting</span> Class of ranked-choice electoral systems

Positional voting is a ranked voting electoral system in which the options or candidates receive points based on their rank position on each ballot and the one with the most points overall wins. The lower-ranked preference in any adjacent pair is generally of less value than the higher-ranked one. Although it may sometimes be weighted the same, it is never worth more. A valid progression of points or weightings may be chosen at will or it may form a mathematical sequence such as an arithmetic progression, a geometric one or a harmonic one. The set of weightings employed in an election heavily influences the rank ordering of the candidates. The steeper the initial decline in preference values with descending rank, the more polarised and less consensual the positional voting system becomes.

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose.

<span class="mw-page-title-main">Independence of clones criterion</span> Property of electoral systems

In social choice theory, the independence of (irrelevant) clones criterion says that adding a clone, i.e. a new candidate very similar to an already-existing candidate, should not spoil the results. It can be considered a very weak form of the independence of irrelevant alternatives (IIA) criterion.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule which gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate with the most points is the winner.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV), also known as ranked-choice voting (RCV), preferential voting (PV), or the alternative vote (AV), is a multi-round elimination rule where the loser of each round is determined by first-past-the-post voting. In academic contexts, the system is generally called instant-runoff voting to avoid conflating it with other methods of ranked voting in general.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties.

There are a number of different criteria which can be used for voting systems in an election, including the following

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.

<span class="mw-page-title-main">STAR voting</span> Single-winner electoral system

STAR voting is an electoral system for single-seat elections. The name stands for "Score then Automatic Runoff", referring to the fact that this system is a combination of score voting, to pick two finalists with the highest total scores, followed by an "automatic runoff" in which the finalist who is preferred on more ballots wins. It is a type of cardinal voting electoral system.

References

  1. Schulze, Markus (2024-03-03), The Schulze Method of Voting, arXiv: 1804.02973
  2. 1 2 Saari, Donald G. (2012-12-06). Geometry of Voting. Springer Science & Business Media. ISBN   978-3-642-48644-9.