The seats-to-votes ratio, [1] also known as the advantage ratio, [2] is a measure of equal representation of voters. The equation for seats-to-votes ratio for a political party i is:
where is fraction of votes and is fraction of seats.
In the case both seats and votes are represented as fractions or percentages, then every voter has equal representation if the seats-to-votes ratio is 1. The principle of equal representation is expressed in slogan one man, one vote and relates to proportional representation.
Related is the votes-per-seat-won, [3] which is inverse to the seats-to-votes ratio.
The Sainte-Laguë Index is a disproportionality index derived by applying the Pearson's chi-squared test to the seats-to-votes ratio, [4] the Gallagher index has a similar formula.
Different apportionment methods such as Sainte-Laguë method and D'Hondt method differ in the seats-to-votes ratio for individual parties.
The Sainte-Laguë method optimizes the seats-to-votes ratio among all parties with the least squares approach. The difference of the seats-to-votes ratio and the ideal seats-to-votes ratio for each party is squared, weighted according to the vote share of each party and summed up:
It was shown [2] that this error is minimized by the Sainte-Laguë method.
The D'Hondt method approximates proportionality by minimizing the largest seats-to-votes ratio among all parties. [2] The largest seats-to-votes ratio, which measures how over-represented the most over-represented party among all parties is:
The D'Hondt method minimizes the largest seats-to-votes ratio by assigning the seats, [5]
where is a seat allocation from the set of all allowed seat allocations .
Party-list proportional representation (list-PR) is a subset of proportional representation electoral systems in which multiple candidates are elected through their position on an electoral list. They can also be used as part of mixed-member electoral systems.
In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called activity. Power is a scalar quantity.
The D'Hondt method, also called the Jefferson method or the greatest divisors method, is an apportionment method for allocating seats in parliaments among federal states, or in proportional representation among political parties. It belongs to the class of highest-averages methods. The D'Hondt method reduces compared to ideal proportional representation somewhat the political fragmentation for smaller electoral district sizes, where it favors larger political parties over small parties.
The Webster method, also called the Sainte-Laguë method, is a highest averages apportionment method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system. The Sainte-Laguë method shows a more equal seats-to-votes ratio for different sized parties among apportionment methods.
In mathematics, economics, and political science, the highest averages methods, also called divisor methods, are a class of apportionment algorithms for proportional representation. Divisor algorithms seek to fairly divide a legislature between agents. More generally, divisor methods are used to divide or round a whole number of objects being used to represent (non-whole) shares of a total.
Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre, or in the MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.
In mathematics and computing, the Levenberg–Marquardt algorithm, also known as the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA. LMA can also be viewed as Gauss–Newton using a trust region approach.
The Gallagher index measures an electoral system's relative disproportionality between votes received and seats in a legislature. As such, it measures the difference between the percentage of votes each party gets and the percentage of seats each party gets in the resulting legislature, and it also measures this disproportionality from all parties collectively in any one given election. That collective disproportionality from the election is given a precise score, which can then be used in comparing various levels of proportionality among various elections from various electoral systems. The Gallagher index is a statistical analysis methodology utilised within political science, notably the branch of psephology.
The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used for gauging the similarity and diversity of sample sets.
The Huntington–Hill method is a method for proportional allocation of the seats in a representative assembly by minimizing the percentage differences in the number of constituents represented by each seat. Edward Huntington formulated this approach, building on the earlier work of Joseph Adna Hill, and called it the method of equal proportions. Since 1941, this method has been used to apportion the 435 seats in the United States House of Representatives following the completion of each decennial census.
Apportionment is the process by which seats in a legislative body are distributed among administrative divisions, such as states or parties, entitled to representation. This page presents the general principles and issues related to apportionment. The page Apportionment by country describes specific practices used around the world. The page Mathematics of apportionment describes mathematical formulations and properties of apportionment rules.
Leveling seats, commonly known also as adjustment seats, are an election mechanism employed for many years by all Nordic countries in elections for their national legislatures. In 2013, Germany also introduced national leveling seats for their national parliament, the Bundestag. The electoral reform in Germany in 2023 removed the leveling seats, and replaced them with Zweitstimmendeckung. Leveling seats are seats of additional members elected to supplement the members directly elected by each constituency. The purpose of these additional seats is to ensure that each party's share of the total seats is roughly proportional to the party's overall shares of votes at the national level.
Fairness measures or metrics are used in network engineering to determine whether users or applications are receiving a fair share of system resources. There are several mathematical and conceptual definitions of fairness.
The Sainte-Laguë index (SLI) measures an election’s disproportionality, the adherence to the one person, one vote principle of equal representation. This index assumes if the fraction of voters matches the fraction of seats, then perfect proportionality is achieved.
Proportional approval voting (PAV) is a proportional electoral system for multiwinner elections. It is a multiwinner approval method that extends the highest averages method of apportionment commonly used to calculate apportionments for party-list proportional representation. However, PAV allows voters to support only the candidates they approve of, rather than being forced to approve or reject all candidates on a given party list.
The Loosemore–Hanby index measures disproportionality of electoral systems, how much the principle of one person, one vote is violated. It computes the absolute difference between votes cast and seats obtained using the formula:
In computational and mathematical biology, a biological lattice-gas cellular automaton (BIO-LGCA) is a discrete model for moving and interacting biological agents, a type of cellular automaton. The BIO-LGCA is based on the lattice-gas cellular automaton (LGCA) model used in fluid dynamics. A BIO-LGCA model describes cells and other motile biological agents as point particles moving on a discrete lattice, thereby interacting with nearby particles. Contrary to classic cellular automaton models, particles in BIO-LGCA are defined by their position and velocity. This allows to model and analyze active fluids and collective migration mediated primarily through changes in momentum, rather than density. BIO-LGCA applications include cancer invasion and cancer progression.
Mathematics of apportionment describes mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world.
Vote-ratio monotonicity (VRM) is a property of apportionment methods, which are methods of allocating seats in a parliament among political parties. The property says that, if the ratio between the number of votes won by party A to the number of votes won by party B increases, then it should NOT happen that party A loses a seat while party B gains a seat.
The Method of Equal Shares is a proportional method of counting ballots that applies to participatory budgeting, to committee elections, and to simultaneous public decisions. It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power".