Condorcet paradox

Last updated

In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee that a winner will have support from a majority of voters: for example there can be rock-paper-scissors scenario where a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.

Contents

In such a cycle, every possible choice is rejected by the electorate in favor of another alternative, who is preferred by more than half of all voters. Thus, any attempt to ground social decision-making in majoritarianism must accept such self-contradictions (commonly called spoiler effects). Systems that attempt to do so, while minimizing the rate of such self-contradictions, are called Condorcet methods.

Condorcet's paradox is a special case of Arrow's paradox, which shows that any kind of social decision-making process is either self-contradictory, a dictatorship, or incorporates information about the strength of different voters' preferences (e.g. cardinal utility or rated voting).

History

Condorcet's paradox was first discovered by Catalan philosopher and theologian Ramon Llull in the 13th century, during his investigations into church governance, but his work was lost until the 21st century. The mathematician and political philosopher Marquis de Condorcet rediscovered the paradox in the late 18th century. [1] [2] [3]

Condorcet's discovery means he arguably identified the key result of Arrow's impossibility theorem, albeit under stronger conditions than required by Arrow: Condorcet cycles create situations where any ranked voting system that respects majorities must have a spoiler effect.

Example

Suppose we have three candidates, A, B, and C, and that there are three voters with preferences as follows:

VoterFirst preferenceSecond preferenceThird preference
Voter 1ABC
Voter 2BCA
Voter 3CAB
Voters (blue) and candidates (red) plotted in a 2-dimensional preference space. Each voter prefers a closer candidate over a farther. Arrows show the order in which voters prefer the candidates. Voting Paradox example.png
Voters (blue) and candidates (red) plotted in a 2-dimensional preference space. Each voter prefers a closer candidate over a farther. Arrows show the order in which voters prefer the candidates.

If C is chosen as the winner, it can be argued that B should win instead, since two voters (1 and 2) prefer B to C and only one voter (3) prefers C to B. However, by the same argument A is preferred to B, and C is preferred to A, by a margin of two to one on each occasion. Thus the society's preferences show cycling: A is preferred over B which is preferred over C which is preferred over A.

As a result, any attempt to appeal to the principle of majority rule will lead to logical self-contradiction. Regardless of which alternative we select, we can find another alternative that would be preferred by most voters.

Practical scenario

The voters in Cactus County prefer the incumbent county executive Alex of the Farmers' Party over rival Beatrice of the Solar Panel Party by about a 2-to-1 margin. This year a third candidate, Charlie, is running as an independent. Charlie is a wealthy and outspoken businessman, of whom the voters hold polarized views.

The voters divide into three groups:

Therefore a majority of voters prefer Alex to Beatrice (A > B), as they always have. A majority of voters are either Beatrice-lovers or Charlie-haters, so prefer Beatrice to Charlie (B > C). And a majority of voters are either Charlie-lovers or Alex-haters, so prefer Charlie to Alex (C > A). Combining the three preferences gives us A > B > C > A, a Condorcet cycle.

Likelihood

It is possible to estimate the probability of the paradox by extrapolating from real election data, or using mathematical models of voter behavior, though the results depend strongly on which model is used.

Impartial culture model

We can calculate the probability of seeing the paradox for the special case where voter preferences are uniformly distributed among the candidates. (This is the "impartial culture" model, which is known to be a "worst-case scenario" [4] [5] :40 [6] :320 [7] —most models show substantially lower probabilities of Condorcet cycles.)

For voters providing a preference list of three candidates A, B, C, we write (resp. , ) the random variable equal to the number of voters who placed A in front of B (respectively B in front of C, C in front of A). The sought probability is (we double because there is also the symmetric case A> C> B> A). We show that, for odd , where which makes one need to know only the joint distribution of and .

If we put , we show the relation which makes it possible to compute this distribution by recurrence: .

The following results are then obtained:

3101201301401501601
5.556%8.690%8.732%8.746%8.753%8.757%8.760%

The sequence seems to be tending towards a finite limit.

Using the central limit theorem, we show that tends to where is a variable following a Cauchy distribution, which gives (constant quoted in the OEIS).

The asymptotic probability of encountering the Condorcet paradox is therefore which gives the value 8.77%. [8] [9]

Some results for the case of more than three candidates have been calculated [10] and simulated. [11] The simulated likelihood for an impartial culture model with 25 voters increases with the number of candidates: [11] :28

345710
8.4%16.6%24.2%35.7%47.5%

The likelihood of a Condorcet cycle for related models approach these values for three-candidate elections with large electorates: [9]

All of these models are unrealistic, but can be investigated to establish an upper bound on the likelihood of a cycle. [9]

Group coherence models

When modeled with more realistic voter preferences, Condorcet paradoxes in elections with a small number of candidates and a large number of voters become very rare. [5] :78

Spatial model

A study of three-candidate elections analyzed 12 different models of voter behavior, and found the spatial model of voting to be the most accurate to real-world ranked-ballot election data. Analyzing this spatial model, they found the likelihood of a cycle to decrease to zero as the number of voters increases, with likelihoods of 5% for 100 voters, 0.5% for 1000 voters, and 0.06% for 10,000 voters. [12]

Another spatial model found likelihoods of 2% or less in all simulations of 201 voters and 5 candidates, whether two or four-dimensional, with or without correlation between dimensions, and with two different dispersions of candidates. [11] :31

Empirical studies

Many attempts have been made at finding empirical examples of the paradox. [13] Empirical identification of a Condorcet paradox presupposes extensive data on the decision-makers' preferences over all alternatives—something that is only very rarely available.

While examples of the paradox seem to occur occasionally in small settings (e.g., parliaments) very few examples have been found in larger groups (e.g. electorates), although some have been identified. [14]

A summary of 37 individual studies, covering a total of 265 real-world elections, large and small, found 25 instances of a Condorcet paradox, for a total likelihood of 9.4% [6] :325 (and this may be a high estimate, since cases of the paradox are more likely to be reported on than cases without). [5] :47

An analysis of 883 three-candidate elections extracted from 84 real-world ranked-ballot elections of the Electoral Reform Society found a Condorcet cycle likelihood of 0.7%. These derived elections had between 350 and 1,957 voters. [12] A similar analysis of data from the 1970–2004 American National Election Studies thermometer scale surveys found a Condorcet cycle likelihood of 0.4%. These derived elections had between 759 and 2,521 "voters". [12]

Andrew Myers, who operates the Condorcet Internet Voting Service, analyzed 10,354 nonpolitical CIVS elections and found cycles in 17% of elections with at least 10 votes, with the figure dropping to 2.1% for elections with at least 100 votes, and 1.2% for ≥300 votes. [15]

Real world instances

A database of 189 ranked United States elections from 2004 to 2022 contained only one Condorcet cycle: the 2021 Minneapolis City Council election in Ward 2, with a narrow circular tie between candidates of the Green Party (Cam Gordon), the Minnesota Democratic–Farmer–Labor Party, (Yusra Arab) and an independent democratic socialist (Robin Wonsley). [16] Voters' preferences were non-transitive: Arab was preferred over Gordon, Gordon over Worlobah, and Worlobah over Arab, creating a cyclical pattern with no clear winner. Additionally, the election exhibited a downward monotonicity paradox, as well as a paradox akin to Simpson’s paradox.

Implications

Three men portraying a Mexican standoff. Just as there is no winner in a Mexican standoff with certain combinations of gun-pointings, there is sometimes no majority-preferred winner in a ranked-ballot election. Mexican Standoff.jpg
Three men portraying a Mexican standoff. Just as there is no winner in a Mexican standoff with certain combinations of gun-pointings, there is sometimes no majority-preferred winner in a ranked-ballot election.

When a Condorcet method is used to determine an election, the voting paradox of cyclical societal preferences implies that the election has no Condorcet winner: no candidate who can win a one-on-one election against each other candidate. There will still be a smallest group of candidates, known as the Smith set, such that each candidate in the group can win a one-on-one election against each of the candidates outside the group. The several variants of the Condorcet method differ on how they resolve such ambiguities when they arise to determine a winner. [17] The Condorcet methods which always elect someone from the Smith set when there is no Condorcet winner are known as Smith-efficient. Note that using only rankings, there is no fair and deterministic resolution to the trivial example given earlier because each candidate is in an exactly symmetrical situation.

Situations having the voting paradox can cause voting mechanisms to violate the axiom of independence of irrelevant alternatives—the choice of winner by a voting mechanism could be influenced by whether or not a losing candidate is available to be voted for.

Two-stage voting processes

One important implication of the possible existence of the voting paradox in a practical situation is that in a paired voting process like those of standard parliamentary procedure, the eventual winner will depend on the way the majority votes are ordered. For example, say a popular bill is set to pass, before some other group offers an amendment; this amendment passes by majority vote. This may result in a majority of a legislature rejecting the bill as a whole, thus creating a paradox (where a popular amendment to a popular bill has made it unpopular). This logical inconsistency is the origin of the poison pill amendment, which deliberately engineers a false Condorcet cycle to kill a bill. Likewise, the order of votes in a legislature can be manipulated by the person arranging them to ensure their preferred outcome wins.

Despite frequent objections by social choice theorists about the logically incoherent results of such procedures, and the existence of better alternatives for choosing between multiple versions of a bill, the procedure of pairwise majority-rule is widely-used and is codified into the by-laws or parliamentary procedures of almost every kind of deliberative assembly.

Spoiler effects

Condorcet paradoxes imply majoritarian methods fail independent of irrelevant alternatives. Label the three candidates in a race Rock, Paper, and Scissors. In a one-on-one race, Rock loses to Paper, Paper to Scissors, etc.

Without loss of generality, say that Rock wins the election with a certain method. Then, Scissors is a spoiler candidate for Paper: if Scissors were to drop out, Paper would win the only one-on-one race (Paper defeats Rock). The same reasoning applies regardless of the winner.

This example also shows why Condorcet elections are rarely (if ever) spoiled: spoilers can only happen when there is no Condorcet winner. Condorcet cycles are rare in large elections, [18] [19] and the median voter theorem shows cycles are impossible whenever candidates are arrayed on a left-right spectrum.

See also

Related Research Articles

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Arrow's impossibility theorem</span> Proof all ranked voting rules have spoilers

Arrow's impossibility theorem is a key result in social choice theory, showing that no ranking-based decision rule can satisfy the requirements of rational choice theory. Most notably, Arrow showed that no such rule can satisfy all of a certain set of seemingly simple and reasonable conditions that include independence of irrelevant alternatives, the principle that a choice between two alternatives A and B should not depend on the quality of some third, unrelated option C.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

Independence of irrelevant alternatives (IIA) is an axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, cognitive science, social choice, fair division, rational choice, artificial intelligence, probability, and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.

<span class="mw-page-title-main">Majority rule</span> Decision rule that selects alternatives which have a majority

In social choice theory, the majority rule (MR) is a social choice rule which says that, when comparing two options, the option preferred by more than half of the voters should win.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">Kemeny–Young method</span> Single-winner electoral system

The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.

<span class="mw-page-title-main">Paradox of voting</span> Paradox of the expected benefit of voting

The paradox of voting, also called Downs' paradox, is that for a rational and egoistic voter, the costs of voting will normally exceed the expected benefits. Because the chance of exercising the pivotal vote is minuscule compared to any realistic estimate of the private individual benefits of the different possible outcomes, the expected benefits of voting are less than the costs. Responses to the paradox have included the view that voters vote to express their preference for a candidate rather than affect the outcome of the election, that voters exercise some degree of altruism, or that the paradox ignores the collateral benefits associated with voting besides the resulting electoral outcome.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule that gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate or candidates with the most points is/are the winner or winners.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting (IRV) is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoffs with only one vote. In each round, the candidate with the fewest votes counting towards them is eliminated, and the votes are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system.

In game theory and political science, Poisson games are a class of games often used to model the behavior of large populations. One common application is determining the strategic behavior of voters with imperfect information about each other's preferences. Poisson games are most often used to model strategic voting in large electorates with secret and simultaneous voting.

<span class="mw-page-title-main">Ranked voting</span> Voting systems that use ranked ballots

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties. In instant-runoff voting (IRV) and the single transferable vote system (STV), lower preferences are used as contingencies and are only applied when all higher-ranked preferences on a ballot have been eliminated or when one of the higher ranked preferences has been elected and surplus votes need to be transferred.

There are a number of different criteria which can be used for voting systems in an election, including the following

<span class="mw-page-title-main">Maximal lotteries</span> Probabilistic Condorcet method

Maximal lotteries refers to a probabilistic voting rule. The method uses preferential ballots and returns a probability distribution of candidates that a majority of voters would weakly prefer to any other.

The McKelvey–Schofield chaos theorem is a result in social choice theory. It states that if preferences are defined over a multidimensional policy space, then choosing policies using majority rule is unstable. There will in most cases be no Condorcet winner and any policy can be enacted through a sequence of votes, regardless of the original policy. This means that adding more policies and changing the order of votes can be used to arbitrarily pick the winner.

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

This article discusses the methods and results of comparing different electoral systems. There are two broad ways to compare voting systems:

  1. Metrics of voter satisfaction, either through simulation or survey.
  2. Adherence to logical criteria.

Impartial culture (IC) or the culture of indifference is a probabilistic model used in social choice theory for analyzing ranked voting method rules.

<span class="mw-page-title-main">Condorcet efficiency</span>

Condorcet efficiency is a measurement of the performance of voting methods. It is defined as the percentage of elections for which the Condorcet winner is elected, provided there is one.

<span class="mw-page-title-main">Fractional social choice</span>

Fractional, stochastic, or weighted social choice is a branch of social choice theory in which the collective decision is not a single alternative, but rather a weighted sum of two or more alternatives. For example, if society has to choose between three candidates, then in standard social choice exactly one of these candidates is chosen. By contrast, in fractional social choice it is possible to choose any linear combination of these, e.g. "2/3 of A and 1/3 of B".

References

  1. Marquis de Condorcet (1785). Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix (PNG) (in French). Retrieved 2008-03-10.
  2. Condorcet, Jean-Antoine-Nicolas de Caritat; Sommerlad, Fiona; McLean, Iain (1989-01-01). The political theory of Condorcet. Oxford: University of Oxford, Faculty of Social Studies. pp. 69–80, 152–166. OCLC   20408445. Clearly, if anyone's vote was self-contradictory (having cyclic preferences), it would have to be discounted, and we should therefore establish a form of voting which makes such absurdities impossible
  3. Gehrlein, William V. (2002). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN   0040-5833. S2CID   118143928. Here, Condorcet notes that we have a 'contradictory system' that represents what has come to be known as Condorcet's Paradox.
  4. Tsetlin, Ilia; Regenwetter, Michel; Grofman, Bernard (2003-12-01). "The impartial culture maximizes the probability of majority cycles". Social Choice and Welfare. 21 (3): 387–398. doi:10.1007/s00355-003-0269-z. ISSN   0176-1714. S2CID   15488300. it is widely acknowledged that the impartial culture is unrealistic ... the impartial culture is the worst case scenario
  5. 1 2 3 Gehrlein, William V.; Lepelley, Dominique (2011). Voting paradoxes and group coherence : the condorcet efficiency of voting rules. Berlin: Springer. doi:10.1007/978-3-642-03107-6. ISBN   9783642031076. OCLC   695387286. most election results do not correspond to anything like any of DC, IC, IAC or MC ... empirical studies ... indicate that some of the most common paradoxes are relatively unlikely to be observed in actual elections. ... it is easily concluded that Condorcet's Paradox should very rarely be observed in any real elections on a small number of candidates with large electorates, as long as voters' preferences reflect any reasonable degree of group mutual coherence
  6. 1 2 Van Deemen, Adrian (2014). "On the empirical relevance of Condorcet's paradox". Public Choice. 158 (3–4): 311–330. doi:10.1007/s11127-013-0133-3. ISSN   0048-5829. S2CID   154862595. small departures of the impartial culture assumption may lead to large changes in the probability of the paradox. It may lead to huge declines or, just the opposite, to huge increases.
  7. May, Robert M. (1971). "Some mathematical remarks on the paradox of voting". Behavioral Science. 16 (2): 143–151. doi:10.1002/bs.3830160204. ISSN   0005-7940.
  8. Guilbaud, Georges-Théodule (2012). "Les théories de l'intérêt général et le problème logique de l'agrégation". Revue économique. 63 (4): 659–720. doi: 10.3917/reco.634.0659 . ISSN   0035-2764.
  9. 1 2 3 Gehrlein, William V. (2002-03-01). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN   1573-7187. S2CID   118143928. to have a PMRW with probability approaching 15/16 = 0.9375 with IAC and UC, and approaching 109/120 = 0.9083 for MC. … these cases represent situations in which the probability that a PMRW exists would tend to be at a minimum … intended to give us some idea of the lower bound on the likelihood that a PMRW exists.
  10. Gehrlein, William V. (1997). "Condorcet's paradox and the Condorcet efficiency of voting rules". Mathematica Japonica. 45: 173–199.
  11. 1 2 3 Merrill, Samuel (1984). "A Comparison of Efficiency of Multicandidate Electoral Systems". American Journal of Political Science. 28 (1): 23–48. doi:10.2307/2110786. ISSN   0092-5853. JSTOR   2110786.
  12. 1 2 3 Tideman, T. Nicolaus; Plassmann, Florenz (2012), Felsenthal, Dan S.; Machover, Moshé (eds.), "Modeling the Outcomes of Vote-Casting in Actual Elections", Electoral Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, Table 9.6 Shares of strict pairwise majority rule winners (SPMRWs) in observed and simulated elections, doi:10.1007/978-3-642-20441-8_9, ISBN   978-3-642-20440-1 , retrieved 2021-11-12, Mean number of voters: 1000 … Spatial model: 99.47% [0.5% cycle likelihood] … 716.4 [ERS data] … Observed elections: 99.32% … 1,566.7 [ANES data] … 99.56%
  13. Kurrild-Klitgaard, Peter (2014). "Empirical social choice: An introduction". Public Choice. 158 (3–4): 297–310. doi:10.1007/s11127-014-0164-4. ISSN   0048-5829. S2CID   148982833.
  14. Kurrild-Klitgaard, Peter (2001). "An empirical example of the Condorcet paradox of voting in a large electorate". Public Choice. 107: 135–145. doi:10.1023/A:1010304729545. ISSN   0048-5829. S2CID   152300013.
  15. Myers, A. C. (March 2024). The Frequency of Condorcet Winners in Real Non-Political Elections. 61st Public Choice Society Conference. p. 5. 83.1% … 97.9% … 98.8% … Figure 2: Frequency of CWs and weak CWs with an increasing number of voters
  16. Graham-Squire, Adam; McCune, David (2023-01-28). "An Examination of Ranked Choice Voting in the United States, 2004-2022". arXiv: 2301.12075v2 [econ.GN].
  17. Lippman, David (2014). "Voting Theory". Math in society. CreateSpace Independent Publishing Platform. ISBN   978-1479276530. OCLC   913874268. There are many Condorcet methods, which vary primarily in how they deal with ties, which are very common when a Condorcet winner does not exist.
  18. Gehrlein, William V. (2002-03-01). "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences*". Theory and Decision. 52 (2): 171–199. doi:10.1023/A:1015551010381. ISSN   1573-7187.
  19. Van Deemen, Adrian (2014-03-01). "On the empirical relevance of Condorcet's paradox". Public Choice. 158 (3): 311–330. doi:10.1007/s11127-013-0133-3. ISSN   1573-7101.

Further reading