Nakamura number

Last updated

In cooperative game theory and social choice theory, the Nakamura number measures the degree of rationality of preference aggregation rules (collective decision rules), such as voting rules. It is an indicator of the extent to which an aggregation rule can yield well-defined choices.

Contents

In contrast,

The larger the Nakamura number a rule has, the greater the number of alternatives the rule can rationally deal with. For example, since (except in the case of four individuals (voters)) the Nakamura number of majority rule is three, the rule can deal with up to two alternatives rationally (without causing a paradox). The number is named after Kenjiro Nakamura  [ ja ] (1947–1979), a Japanese game theorist who proved the above fact that the rationality of collective choice critically depends on the number of alternatives. [1]

Overview

To introduce a precise definition of the Nakamura number, we give an example of a "game" (underlying the rule in question) to which a Nakamura number will be assigned. Suppose the set of individuals consists of individuals 1, 2, 3, 4, and 5. Behind majority rule is the following collection of ("decisive") coalitions (subsets of individuals) having at least three members:

{ {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5} }

A Nakamura number can be assigned to such collections, which we call simple games. More precisely, a simple game is just an arbitrary collection of coalitions; the coalitions belonging to the collection are said to be winning; the others losing. If all the (at least three, in the example above) members of a winning coalition prefer alternative x to alternative y, then the society (of five individuals, in the example above) will adopt the same ranking (social preference).

The Nakamura number of a simple game is defined as the minimum number of winning coalitions with empty intersection. (By intersecting this number of winning coalitions, one can sometimes obtain an empty set. But by intersecting less than this number, one can never obtain an empty set.) The Nakamura number of the simple game above is three, for example, since the intersection of any two winning coalitions contains at least one individual but the intersection of the following three winning coalitions is empty: , , .

Nakamura's theorem (1979 [2] ) gives the following necessary (also sufficient if the set of alternatives is finite) condition for a simple game to have a nonempty "core" (the set of socially "best" alternatives) for all profiles of individual preferences: the number of alternatives is less than the Nakamura number of the simple game. Here, the core of a simple game with respect to the profile of preferences is the set of all alternatives such that there is no alternative that every individual in a winning coalition prefers to ; that is, the set of maximal elements of the social preference. For the majority game example above, the theorem implies that the core will be empty (no alternative will be deemed "best") for some profile, if there are three or more alternatives.

Variants of Nakamura's theorem exist that provide a condition for the core to be nonempty (i) for all profiles of acyclic preferences; (ii) for all profiles of transitive preferences; and (iii) for all profiles of linear orders. There is a different kind of variant (Kumabe and Mihara, 2011 [3] ), which dispenses with acyclicity, the weak requirement of rationality. The variant gives a condition for the core to be nonempty for all profiles of preferences that have maximal elements.

For ranking alternatives, there is a very well known result called "Arrow's impossibility theorem" in social choice theory, which points out the difficulty for a group of individuals in ranking three or more alternatives. For choosing from a set of alternatives (instead of ranking them), Nakamura's theorem is more relevant. [5] An interesting question is how large the Nakamura number can be. It has been shown that for a (finite or) algorithmically computable simple game that has no veto player (an individual that belongs to every winning coalition) to have a Nakamura number greater than three, the game has to be non-strong. [6] This means that there is a losing (i.e., not winning) coalition whose complement is also losing. This in turn implies that nonemptyness of the core is assured for a set of three or more alternatives only if the core may contain several alternatives that cannot be strictly ranked. [8]

Framework

Let be a (finite or infinite) nonempty set of individuals. The subsets of are called coalitions. A simple game (voting game) is a collection of coalitions. (Equivalently, it is a coalitional game that assigns either 1 or 0 to each coalition.) We assume that is nonempty and does not contain an empty set. The coalitions belonging to are winning; the others are losing. A simple game is monotonic if and imply . It is proper if implies . It is strong if implies . A veto player (vetoer) is an individual that belongs to all winning coalitions. A simple game is nonweak if it has no veto player. It is finite if there is a finite set (called a carrier) such that for all coalitions , we have iff .

Let be a (finite or infinite) set of alternatives, whose cardinal number (the number of elements) is at least two. A (strict) preference is an asymmetric relation on : if (read " is preferred to "), then . We say that a preference is acyclic (does not contain cycles) if for any finite number of alternatives , whenever , ,…, , we have . Note that acyclic relations are asymmetric, hence preferences.

A profile is a list of individual preferences . Here means that individual prefers alternative to at profile .

A simple game with ordinal preferences is a pair consisting of a simple game and a profile . Given , a dominance (social preference) relation is defined on by if and only if there is a winning coalition satisfying for all . The core of is the set of alternatives undominated by (the set of maximal elements of with respect to ):

if and only if there is no such that .

Definition and examples

The Nakamura number of a simple game is the size (cardinal number) of the smallest collection of winning coalitions with empty intersection: [9]

if (no veto player); [2] otherwise, (greater than any cardinal number).

it is easy to prove that if is a simple game without a veto player, then .

Examples for finitely many individuals () (see Austen-Smith and Banks (1999), Lemma 3.2 [4] ). Let be a simple game that is monotonic and proper.

Examples for at most countably many individuals (). Kumabe and Mihara (2008) comprehensively study the restrictions that various properties (monotonicity, properness, strongness, nonweakness, and finiteness) for simple games impose on their Nakamura number (the Table "Possible Nakamura Numbers" below summarizes the results). In particular, they show that an algorithmically computable simple game [10] without a veto player has a Nakamura number greater than 3 only if it is proper and nonstrong. [6]

Possible Nakamura Numbers [11]
TypeFinite gamesInfinite games
111133
1110+∞none
1101≥3≥3
1100+∞+∞
101122
1010nonenone
100122
1000nonenone
011122
0110nonenone
0101≥2≥2
0100+∞+∞
001122
0010nonenone
000122
0000nonenone

Nakamura's theorem for acyclic preferences

Nakamura's theorem (Nakamura, 1979, Theorems 2.3 and 2.5 [2] ). Let be a simple game. Then the core is nonempty for all profiles of acyclic preferences if and only if is finite and .

Remarks

A variant of Nakamura's theorem for preferences that may contain cycles

In this section, we discard the usual assumption of acyclic preferences. Instead, we restrict preferences to those having a maximal element on a given agenda (opportunity set that a group of individuals are confronted with), a subset of some underlying set of alternatives. (This weak restriction on preferences might be of some interest from the viewpoint of behavioral economics.) Accordingly, it is appropriate to think of as an agenda here. An alternative is a maximal element with respect to (i.e., has a maximal element ) if there is no such that . If a preference is acyclic over the underlying set of alternatives, then it has a maximal element on every finite subset .

We introduce a strengthening of the core before stating the variant of Nakamura's theorem. An alternative can be in the core even if there is a winning coalition of individuals that are "dissatisfied" with (i.e., each prefers some to ). The following solution excludes such an : [3]

An alternative is in the corewithout majority dissatisfaction if there is no winning coalition such that for all , is non-maximal (there exists some satisfying ).

It is easy to prove that depends only on the set of maximal elements of each individual and is included in the union of such sets. Moreover, for each profile , we have .

A variant of Nakamura's theorem (Kumabe and Mihara, 2011, Theorem 2 [3] ). Let be a simple game. Then the following three statements are equivalent:

  1. ;
  2. the core without majority dissatisfaction is nonempty for all profiles of preferences that have a maximal element;
  3. the core is nonempty for all profiles of preferences that have a maximal element.

Remarks

See also

Notes

  1. Suzuki, Mitsuo (1981). Game theory and social choice: Selected papers of Kenjiro Nakamura. Keiso Shuppan. Nakamura received Doctor's degree in Social Engineering in 1975 from Tokyo Institute of Technology.
  2. 1 2 3 4 Nakamura, K. (1979). "The vetoers in a simple game with ordinal preferences". International Journal of Game Theory. 8: 55–61. doi:10.1007/BF01763051. S2CID   120709873.
  3. 1 2 3 4 Kumabe, M.; Mihara, H. R. (2011). "Preference aggregation theory without acyclicity: the core without majority dissatisfaction" (PDF). Games and Economic Behavior. 72: 187–201. arXiv: 1107.0431 . doi:10.1016/j.geb.2010.06.008. S2CID   6685306.
  4. 1 2 3 4 Austen-Smith, David; Banks, Jeffrey S. (1999). Positive political theory I: Collective preference. Ann Arbor: University of Michigan Press. ISBN   978-0-472-08721-1.
  5. Nakamura's original theorem is directly relevant to the class of simple preference aggregation rules, the rules completely described by their family of decisive (winning) coalitions. (Given an aggregation rule, a coalition is decisive if whenever every individual in prefers to , then so does the society.) Austen-Smith and Banks (1999), [4] a textbook on social choice theory that emphasizes the role of the Nakamura number, extends the Nakamura number to the wider (and empirically important) class of neutral (i.e., the labeling of alternatives does not matter) and monotonic (if is socially preferred to , then increasing the support for over preserves this social preference) aggregation rules (Theorem 3.3), and obtain a theorem (Theorem 3.4) similar to Nakamua's.
  6. 1 2 Kumabe, M.; Mihara, H. R. (2008). "The Nakamura numbers for computable simple games". Social Choice and Welfare. 31 (4): 621. arXiv: 1107.0439 . doi:10.1007/s00355-008-0300-5. S2CID   8106333.
  7. Kirman, A.; Sondermann, D. (1972). "Arrow's theorem, many agents, and invisible dictators". Journal of Economic Theory. 5 (2): 267–277. doi:10.1016/0022-0531(72)90106-8.
  8. There exist monotonic, proper, strong simple games without a veto player that have an infinite Nakamura number. A nonprincipal ultrafilter is an example, which can be used to define an aggregation rule (social welfare function) satisfying Arrow's conditions if there are infinitely many individuals. [7] A serious drawback of nonprincipal ultrafilters for this purpose is that they are not algorithmically computable.
  9. The minimum element of the following set exists since every nonempty set of ordinal numbers has a least element.
  10. See a section for Rice's theorem for the definition of a computable simple game. In particular, all finite games are computable.
  11. Possible Nakamura numbers for computable simple games are given in each entry, assuming that an empty coalition is losing. The sixteen types are defined in terms of the four properties: monotonicity, properness, strongness, and nonweakness (lack of a veto player). For example, the row corresponding to type 1110 indicates that among the monotonic (1), proper (1), strong (1), weak (0, because not nonweak) computable simple games, finite ones have a Nakamura number equal to and infinite ones do not exist. The row corresponding to type 1101 indicates that any (and no ) is the Nakamura number of some finite (alternatively, infinite) simple game of this type. Observe that among nonweak simple games, only types 1101 and 0101 attain a Nakamura number greater than 3.
  12. The "if" direction is obvious while the "only if" direction is stronger than the statement of the theorem given above (the proof is essentially the same). These results are often stated in terms of weak preferences (e.g, Austen-Smith and Banks, 1999, Theorem 3.2 [4] ). Define the weak preference by . Then is asymmetric iff is complete; is negatively transitive iff is transitive. is total if implies or .
  13. The framework distinguishes the algebra of coalitions from the larger collection of the sets of individuals to which winning/losing status can be assigned. For example, is the algebra of recursive sets and is the lattice of recursively enumerable sets (Kumabe and Mihara, 2011, Section 4.2).

Related Research Articles

In computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior, unlike a syntactic property. A property is non-trivial if it is neither true for every partial computable function, nor false for every partial computable function.

Arrow's impossibility theorem, the general possibility theorem or Arrow's paradox is an impossibility theorem in social choice theory that states that when voters have three or more distinct alternatives (options), no ranked voting electoral system can convert the ranked preferences of individuals into a community-wide ranking while also meeting the specified set of criteria: unrestricted domain, non-dictatorship, Pareto efficiency, and independence of irrelevant alternatives. The theorem is often cited in discussions of voting theory as it is further interpreted by the Gibbard–Satterthwaite theorem. The theorem is named after economist and Nobel laureate Kenneth Arrow, who demonstrated the theorem in his doctoral thesis and popularized it in his 1951 book Social Choice and Individual Values. The original paper was titled "A Difficulty in the Concept of Social Welfare".

In mathematics, Hall's marriage theorem, proved by Philip Hall (1935), is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist:

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

In social choice theory, the Gibbard–Satterthwaite theorem is a result published independently by philosopher Allan Gibbard in 1973 and economist Mark Satterthwaite in 1975. It deals with deterministic ordinal electoral systems that choose a single winner. It states that for every voting rule, one of the following three things must hold:

  1. The rule is dictatorial, i.e. there exists a distinguished voter who can choose the winner; or
  2. The rule limits the possible outcomes to two alternatives only; or
  3. The rule is susceptible to tactical voting: in certain conditions, a voter's sincere ballot may not best defend their opinion.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics as well as systems in thermodynamic equilibrium.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

<span class="mw-page-title-main">Antimatroid</span> Mathematical system of orderings or sets

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts.

In mathematical economics, the Arrow–Debreu model is a theoretical general equilibrium model. It posits that under certain economic assumptions there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy.

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In cooperative game theory, the core is the set of feasible allocations that cannot be improved upon by a subset of the economy's agents. A coalition is said to improve upon or block a feasible allocation if the members of that coalition are better off under another feasible allocation that is identical to the first except that every member of the coalition has a different consumption bundle that is part of an aggregate consumption bundle that can be constructed from publicly available technology and the initial endowments of each consumer in the coalition.

In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. This is essentially the Markov partition. The term shift is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem shows that Bernoulli shifts are isomorphic when their entropy is equal.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, the Teichmüller–Tukey lemma, named after John Tukey and Oswald Teichmüller, is a lemma that states that every nonempty collection of finite character has a maximal element with respect to inclusion. Over Zermelo–Fraenkel set theory, the Teichmüller–Tukey lemma is equivalent to the axiom of choice, and therefore to the well-ordering theorem, Zorn's lemma, and the Hausdorff maximal principle.

In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finitep-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups.

Maximal lotteries refers to a probabilistic voting system first considered by the French mathematician and social scientist Germain Kreweras in 1965. The method uses preferential ballots and returns so-called maximal lotteries, i.e., probability distributions over the alternatives that are weakly preferred to any other probability distribution. Maximal lotteries satisfy the Condorcet criterion, the Smith criterion, reversal symmetry, polynomial runtime, and probabilistic versions of reinforcement, participation, and independence of clones.

In economics, the Debreu's theorems are preference representation theorems -- statements about the representation of a preference ordering by a real-valued utility function. The theorems were proved by Gerard Debreu during the 1950s.

<span class="mw-page-title-main">Ultrafilter (set theory)</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.