"What the Tortoise Said to Achilles", [1] written by Lewis Carroll in 1895 for the philosophical journal Mind , [1] is a brief allegorical dialogue on the foundations of logic. [1] The title alludes to one of Zeno's paradoxes of motion, [2] in which Achilles could never overtake the tortoise in a race. In Carroll's dialogue, the tortoise challenges Achilles to use the force of logic to make him accept the conclusion of a simple deductive argument. Ultimately, Achilles fails, because the clever tortoise leads him into an infinite regression. [1]
The discussion begins by considering the following logical argument: [1] [3]
The tortoise accepts premises A and B as true but not the hypothetical:
The Tortoise claims that it is not "under any logical necessity to accept Z as true". The tortoise then challenges Achilles to force it logically to accept Z as true. Instead of searching the tortoise’s reasons for not accepting C, Achilles asks it to accept C, which it does. After which, Achilles says:
The tortoise responds, "That's another Hypothetical, isn't it? And, if I failed to see its truth, I might accept A and B and C, and still not accept Z, mightn't I?" [1] [3]
Again, instead of requesting reasons for not accepting D, he asks the tortoise to accept D. And again, it is "quite willing to grant it", [1] [3] but it still refuses to accept Z. It then tells Achilles to write into his book,
Following this, the Tortoise says: "until I’ve granted that [i.e., E], of course I needn’t grant Z. So it's quite a necessary step". [1] With a touch of sadness, Achilles sees the point. [1] [3]
The story ends by suggesting that the list of premises continues to grow without end, but without explaining the point of the regress. [1] [3]
Lewis Carroll was showing that there is a regressive problem that arises from modus ponens deductions.
Or, in words: proposition P (is true) implies Q (is true), and given P, therefore Q.
The regress problem arises because a prior principle is required to explain logical principles, here modus ponens, and once that principle is explained, another principle is required to explain that principle. Thus, if the argumentative chain is to continue, the argument falls into infinite regress. However, if a formal system is introduced whereby modus ponens is simply a rule of inference defined within the system, then it can be abided by simply by reasoning within the system. That is not to say that the user reasoning according to this formal system agrees with these rules (consider, for example, the constructivist's rejection of the law of the excluded middle and the dialetheist's rejection of the law of noncontradiction). In this way, formalising logic as a system can be considered as a response to the problem of infinite regress: modus ponens is placed as a rule within the system, the validity of modus ponens is eschewed without the system.
In propositional logic, the logical implication is defined as follows:
P implies Q if and only if the proposition not P or Q is a tautology.
Hence modus ponens, [P ∧ (P → Q)] ⇒ Q, is a valid logical conclusion according to the definition of logical implication just stated. Demonstrating the logical implication simply translates into verifying that the compound truth table produces a tautology. But the tortoise does not accept on faith the rules of propositional logic that this explanation is founded upon. He asks that these rules, too, be subject to logical proof. The tortoise and Achilles do not agree on any definition of logical implication.
In addition, the story hints at problems with the propositional solution. Within the system of propositional logic, no proposition or variable carries any semantic content. The moment any proposition or variable takes on semantic content, the problem arises again because semantic content runs outside the system. Thus, if the solution is to be said to work, then it is to be said to work solely within the given formal system, and not otherwise.
Some logicians (Kenneth Ross, Charles Wright) draw a firm distinction between the conditional connective and the implication relation. These logicians use the phrase not p or q for the conditional connective and the term implies for an asserted implication relation.
Several philosophers have tried to resolve Carroll's paradox. Bertrand Russell discussed the paradox briefly in § 38 of The Principles of Mathematics (1903), distinguishing between implication (associated with the form "if p, then q"), which he held to be a relation between unasserted propositions, and inference (associated with the form "p, therefore q"), which he held to be a relation between asserted propositions; having made this distinction, Russell could deny that the Tortoise's attempt to treat inferringZ from A and B as equivalent to, or dependent on, agreeing to the hypothetical "If A and B are true, then Z is true."
Peter Winch, a Wittgensteinian philosopher, discussed the paradox in The Idea of a Social Science and its Relation to Philosophy (1958), where he argued that the paradox showed that "the actual process of drawing an inference, which is after all at the heart of logic, is something which cannot be represented as a logical formula ... Learning to infer is not just a matter of being taught about explicit logical relations between propositions; it is learning to do something" (p. 57). Winch goes on to suggest that the moral of the dialogue is a particular case of a general lesson, to the effect that the proper application of rules governing a form of human activity cannot itself be summed up with a set of further rules, and so that "a form of human activity can never be summed up in a set of explicit precepts" (p. 53).
Carroll's dialogue is apparently the first description of an obstacle to conventionalism about logical truth, [4] later reworked in more sober philosophical terms by W.V.O. Quine. [5]
Lewis Carroll (April 1895). "What the Tortoise Said to Achilles". Mind . IV (14): 278–280. doi:10.1093/mind/IV.14.278.
Reprinted:
As audio:
In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called first-order propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.
In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."
In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning.
Implication may refer to:
In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms.
In logic and the philosophy of logic, specifically in deductive reasoning, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion.
Paraconsistent logic is a type of non-classical logic that allows for the coexistence of contradictory statements without leading to a logical explosion where anything can be proven true. Specifically, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, purposefully excluding the principle of explosion.
The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.
The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.
The barbershop paradox was proposed by Lewis Carroll in a three-page essay titled "A Logical Paradox", which appeared in the July 1894 issue of Mind. The name comes from the "ornamental" short story that Carroll uses in the article to illustrate the paradox. It existed previously in several alternative forms in his writing and correspondence, not always involving a barbershop. Carroll described it as illustrating "a very real difficulty in the Theory of Hypotheticals". From the viewpoint of modern logic, it is seen not so much as a paradox than as a simple logical error. It is of interest now mainly as an episode in the development of algebraic logical methods when these were not so widely understood, although the problem continues to be discussed in relation to theories of implication and modal logic.
In epistemology, the Münchhausen trilemma is a thought experiment intended to demonstrate the theoretical impossibility of proving any truth, even in the fields of logic and mathematics, without appealing to accepted assumptions. If it is asked how any given proposition is known to be true, proof in support of that proposition may be provided. Yet that same question can be asked of that supporting proof, and any subsequent supporting proof. The Münchhausen trilemma is that there are only three ways of completing a proof:
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.
In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
In logic, modus non excipiens is a valid rule of inference that is closely related to modus ponens. This argument form was created by Bart Verheij to address certain arguments which are types of modus ponens arguments, but must be considered to be invalid. An instance of a particular modus ponens type argument is
In logic, inference is the process of deriving logical conclusions from premises known or assumed to be true. In checking a logical inference for formal and material validity, the meaning of only its logical vocabulary and of both its logical and extra-logical vocabulary is considered, respectively.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.