The drinker paradox (also known as the drinker's theorem, the drinker's principle, or the drinking principle) is a theorem of classical predicate logic that can be stated as "There is someone in the pub such that, if he or she is drinking, then everyone in the pub is drinking." It was popularised by the mathematical logician Raymond Smullyan, who called it the "drinking principle" in his 1978 book What Is the Name of this Book? [1]
The apparently paradoxical nature of the statement comes from the way it is usually stated in natural language. It seems counterintuitive both that there could be a person who is causing the others to drink, or that there could be a person such that all through the night that one person were always the last to drink. The first objection comes from confusing formal "if then" statements with causation (see Correlation does not imply causation or Relevance logic for logics that demand relevant relationships between premise and consequent, unlike classical logic assumed here). The formal statement of the theorem is timeless, eliminating the second objection because the person the statement holds true for at one instant is not necessarily the same person it holds true for at any other instant.[ citation needed ]
The formal statement of the theorem is
where D is an arbitrary predicate and P is an arbitrary nonempty set.
The proof begins by recognizing it is true that either everyone in the pub is drinking, or at least one person in the pub is not drinking. Consequently, there are two cases to consider: [1] [2]
A slightly more formal way of expressing the above is to say that, if everybody drinks, then anyone can be the witness for the validity of the theorem. And if someone does not drink, then that particular non-drinking individual can be the witness to the theorem's validity. [3]
The paradox is ultimately based on the principle of formal logic that the statement is true whenever A is false, i.e., any statement follows from a false statement [1] ( ex falso quodlibet ).
What is important to the paradox is that the conditional in classical (and intuitionistic) logic is the material conditional. It has the property that is true only if B is true or if A is false (in classical logic, but not intuitionistic logic, this is also a sufficient condition).
So as it was applied here, the statement "if they are drinking, everyone is drinking" was taken to be correct in one case, if everyone was drinking, and in the other case, if they were not drinking—even though their drinking may not have had anything to do with anyone else's drinking.
Smullyan in his 1978 book attributes the naming of "The Drinking Principle" to his graduate students. [1] He also discusses variants (obtained by replacing D with other, more dramatic predicates):
As "Smullyan's ‘Drinkers’ principle" or just "Drinkers' principle" it appears in H.P. Barendregt's "The quest for correctness" (1996), accompanied by some machine proofs. [2] Since then it has made regular appearance as an example in publications about automated reasoning; it is sometimes used to contrast the expressiveness of proof assistants. [4]
In the setting with empty domains allowed, the drinker paradox must be formulated as follows: [5]
A set P satisfies
if and only if it is non-empty.
Or in words:
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.
Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.
In mathematics and logic, a vacuous truth is a conditional or universal statement that is true because the antecedent cannot be satisfied. It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are present in the room. In this case, the statement "all cell phones in the room are turned on" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on and turned off", which would otherwise be incoherent and false.
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments.
In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.
In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term. Functional predicates are also sometimes called mappings, but that term has additional meanings in mathematics. In a model, a function symbol will be modelled by a function.
In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.
A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.
In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula P, if it is provable in PA that "if P is provable in PA then P is true", then P is provable in PA. If Prov(P) means that the formula P is provable, we may express this more formally as
Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.
Consequentia mirabilis, also known as Clavius's Law, is used in traditional and classical logic to establish the truth of a proposition from the inconsistency of its negation. It is thus related to reductio ad absurdum, but it can prove a proposition using just its own negation and the concept of consistency. For a more concrete formulation, it states that if a proposition is a consequence of its negation, then it is true, for consistency. In formal notation:
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Markov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below.
This is a glossary of logic. Logic is the study of the principles of valid reasoning and argumentation.
{{cite journal}}
: Cite journal requires |journal=
(help)