Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians.
Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication. This idea is not new: C. I. Lewis was led to invent modal logic, and specifically strict implication, on the grounds that classical logic grants paradoxes of material implication such as the principle that a falsehood implies any proposition. [1] [2] Hence "if I'm a donkey, then two and two is four" is true when translated as a material implication, yet it seems intuitively false since a true implication must tie the antecedent and consequent together by some notion of relevance. And whether or not the speaker is a donkey seems in no way relevant to whether two and two is four.
In terms of a syntactical constraint for a propositional calculus, it is necessary, but not sufficient, that premises and conclusion share atomic formulae (formulae that do not contain any logical connectives). In a predicate calculus, relevance requires sharing of variables and constants between premises and conclusion. This can be ensured (along with stronger conditions) by, e.g., placing certain restrictions on the rules of a natural deduction system. In particular, a Fitch-style natural deduction can be adapted to accommodate relevance by introducing tags at the end of each line of an application of an inference indicating the premises relevant to the conclusion of the inference. Gentzen-style sequent calculi can be modified by removing the weakening rules that allow for the introduction of arbitrary formulae on the right or left side of the sequents.
A notable feature of relevance logics is that they are paraconsistent logics: the existence of a contradiction will not necessarily cause an "explosion." This follows from the fact that a conditional with a contradictory antecedent that does not share any propositional or predicate letters with the consequent cannot be true (or derivable).
Relevance logic was proposed in 1928 by Soviet philosopher Ivan E. Orlov (1886 – circa 1936) in his strictly mathematical paper "The Logic of Compatibility of Propositions" published in Matematicheskii Sbornik. The basic idea of relevant implication appears in medieval logic, and some pioneering work was done by Ackermann, [3] Moh, [4] and Church [5] in the 1950s. Drawing on them, Nuel Belnap and Alan Ross Anderson (with others) wrote the magnum opus of the subject, Entailment: The Logic of Relevance and Necessity in the 1970s (the second volume being published in the nineties). They focused on both systems of entailment and systems of relevance, where implications of the former kinds are supposed to be both relevant and necessary.
The early developments in relevance logic focused on the stronger systems. The development of the Routley–Meyer semantics brought out a range of weaker logics. The weakest of these logics is the relevance logic B. It is axiomatized with the following axioms and rules.
The rules are the following.
Stronger logics can be obtained by adding any of the following axioms.
There are some notable logics stronger than B that can be obtained by adding axioms to B as follows.
The standard model theory for relevance logics is the Routley-Meyer ternary-relational semantics developed by Richard Routley and Robert Meyer. A Routley–Meyer frame F for a propositional language is a quadruple (W,R,*,0), where W is a non-empty set, R is a ternary relation on W, and * is a function from W to W, and . A Routley-Meyer model M is a Routley-Meyer frame F together with a valuation, , that assigns a truth value to each atomic proposition relative to each point . There are some conditions placed on Routley-Meyer frames. Define as .
Write and to indicate that the formula is true, or not true, respectively, at point in . One final condition on Routley-Meyer models is the hereditariness condition.
By an inductive argument, hereditariness can be shown to extend to complex formulas, using the truth conditions below.
The truth conditions for complex formulas are as follows.
A formula holds in a model just in case . A formula holds on a frame iff A holds in every model . A formula is valid in a class of frames iff A holds on every frame in that class. The class of all Routley–Meyer frames satisfying the above conditions validates that relevance logic B. One can obtain Routley-Meyer frames for other relevance logics by placing appropriate restrictions on R and on *. These conditions are easier to state using some standard definitions. Let be defined as , and let be defined as . Some of the frame conditions and the axioms they validate are the following.
Name | Frame condition | Axiom |
---|---|---|
Pseudo-modus ponens | ||
Prefixing | ||
Suffixing | ||
Contraction | ||
Hypothetical syllogism | ||
Assertion | ||
E axiom | ||
Mingle axiom | or | |
Reductio | ||
Contraposition | ||
Excluded middle | ||
Strict implication weakening | ||
Weakening |
The last two conditions validate forms of weakening that relevance logics were originally developed to avoid. They are included to show the flexibility of the Routley–Meyer models.
Operational models for negation-free fragments of relevance logics were developed by Alasdair Urquhart in his PhD thesis and in subsequent work. The intuitive idea behind the operational models is that points in a model are pieces of information, and combining information supporting a conditional with the information supporting its antecedent yields some information that supports the consequent. Since the operational models do not generally interpret negation, this section will consider only languages with a conditional, conjunction, and disjunction.
An operational frame is a triple , where is a non-empty set, , and is a binary operation on . Frames have conditions, some of which may be dropped to model different logics. The conditions Urquhart proposed to model the conditional of the relevance logic R are the following.
Under these conditions, the operational frame is a join-semilattice.
An operational model is a frame with a valuation that maps pairs of points and atomic propositions to truth values, T or F. can be extended to a valuation on complex formulas as follows.
A formula holds in a model iff . A formula is valid in a class of models iff it holds in each model .
The conditional fragment of R is sound and complete with respect to the class of semilattice models. The logic with conjunction and disjunction is properly stronger than the conditional, conjunction, disjunction fragment of R. In particular, the formula is valid for the operational models but it is invalid in R. The logic generated by the operational models for R has a complete axiomatic proof system, due Kit Fine and to Gerald Charlwood. Charlwood also provided a natural deduction system for the logic, which he proved equivalent to the axiomatic system. Charlwood showed that his natural deduction system is equivalent to a system provided by Dag Prawitz.
The operational semantics can be adapted to model the conditional of E by adding a non-empty set of worlds and an accessibility relation on to the frames. The accessibility relation is required to be reflexive and transitive, to capture the idea that E's conditional has an S4 necessity. The valuations then map triples of atomic propositions, points, and worlds to truth values. The truth condition for the conditional is changed to the following.
The operational semantics can be adapted to model the conditional of T by adding a relation on . The relation is required to obey the following conditions.
The truth condition for the conditional is changed to the following.
There are two ways to model the contraction-less relevance logics TW and RW with the operational models. The first way is to drop the condition that . The second way is to keep the semilattice conditions on frames and add a binary relation, , of disjointness to the frame. For these models, the truth conditions for the conditional is changed to the following, with the addition of the ordering in the case of TW.
Urquhart showed that the semilattice logic for R is properly stronger than the positive fragment of R. Lloyd Humberstone provided an enrichment of the operational models that permitted a different truth condition for disjunction. The resulting class of models generates exactly the positive fragment of R.
An operational frame is a quadruple , where is a non-empty set, , and {, } are binary operations on . Let be defined as . The frame conditions are the following.
An operational model is a frame with a valuation that maps pairs of points and atomic propositions to truth values, T or F. can be extended to a valuation on complex formulas as follows.
A formula holds in a model iff . A formula is valid in a class of models iff it holds in each model .
The positive fragment of R is sound and complete with respect to the class of these models. Humberstone's semantics can be adapted to model different logics by dropping or adding frame conditions as follows.
System | Frame conditions | |
---|---|---|
B | 1, 5-9, 14 | |
TW | 1, 11, 12, 5-9, 14 | |
EW | 1, 10, 11, 5-9, 14 | |
RW | 1-3, 5-9 | |
T | 1, 11, 12, 13, 5-9, 14 | |
E | 1, 10, 11, 13, 5-9, 14 | |
R | 1-9 | |
RM | 1-3, 5-9, 15 |
Some relevance logics can be given algebraic models, such as the logic R. The algebraic structures for R are de Morgan monoids, which are sextuples where
The operation interpreting the conditional of R is defined as . A de Morgan monoid is a residuated lattice, obeying the following residuation condition.
An interpretation is a homomorphism from the propositional language to a de Morgan monoid such that
Given a de Morgan monoid and an interpretation , one can say that formula holds on just in case . A formula is valid just in case it holds on all interpretations on all de Morgan monoids. The logic R is sound and complete for de Morgan monoids.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x, if x is a man, then x is mortal"; where "for all x" is a quantifier, x is a variable, and "... is a man" and "... is mortal" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. As a normal form, it is useful in automated theorem proving.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.
In classical, deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory is clearly inconsistent. Conversely, in an explosive formal system every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies.
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation a → b of implication such that (c ∧ a) ≤ b is equivalent to c ≤ (a → b). From a logical standpoint, A → B is by this definition the weakest proposition for which modus ponens, the inference rule A → B, A ⊢ B, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.
Paraconsistent logic is a type of non-classical logic that allows for the coexistence of contradictory statements without leading to a logical explosion where anything can be proven true. Specifically, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, purposefully excluding the principle of explosion.
Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.
Bunched logic is a variety of substructural logic proposed by Peter O'Hearn and David Pym. Bunched logic provides primitives for reasoning about resource composition, which aid in the compositional analysis of computer and other systems. It has category-theoretic and truth-functional semantics, which can be understood in terms of an abstract concept of resource, and a proof theory in which the contexts Γ in an entailment judgement Γ ⊢ A are tree-like structures (bunches) rather than lists or (multi)sets as in most proof calculi. Bunched logic has an associated type theory, and its first application was in providing a way to control the aliasing and other forms of interference in imperative programs. The logic has seen further applications in program verification, where it is the basis of the assertion language of separation logic, and in systems modelling, where it provides a way to decompose the resources used by components of a system.
In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.
In mathematical logic, a tautology is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic.
In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.
In logic, general frames are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.
In mathematical logic the theory of pure equality is a first-order theory. It has a signature consisting of only the equality relation symbol, and includes no non-logical axioms at all.