Principle of explosion

Last updated

In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion [lower-alpha 1] [lower-alpha 2] is the law according to which any statement can be proven from a contradiction. [1] [2] [3] That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. [4] [5]

Contents

The proof of this principle was first given by 12th-century French philosopher William of Soissons. [6] Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. [7] Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the modern Zermelo–Fraenkel set theory.

As a demonstration of the principle, consider two contradictory statements—"All lemons are yellow" and "Not all lemons are yellow"—and suppose that both are true. If that is the case, anything can be proven, e.g., the assertion that "unicorns exist", by using the following argument:

  1. We know that "Not all lemons are yellow", as it has been assumed to be true.
  2. We know that "All lemons are yellow", as it has been assumed to be true.
  3. Therefore, the two-part statement "All lemons are yellow or unicorns exist" must also be true, since the first part of the statement ("All lemons are yellow") has already been assumed, and the use of "or" means that if even one part of the statement is true, the statement as a whole must be true as well.
  4. However, since we also know that "Not all lemons are yellow" (as this has been assumed), the first part is false, and hence the second part must be true to ensure the two-part statement to be true, i.e., unicorns exist (this inference is known as the Disjunctive syllogism).
  5. The procedure may be repeated to prove that unicorns do not exist (hence proving an additional contradiction where unicorns do and do not exist), as well as any other well-formed formula. Thus, there is an explosion of true statements.

In a different solution to the problems posed by the principle of explosion, some mathematicians have devised alternative theories of logic called paraconsistent logics, which allow some contradictory statements to be proven without affecting the truth value of (all) other statements. [7]

Symbolic representation

In symbolic logic, the principle of explosion can be expressed schematically in the following way: [8] [9]

For any statements P and Q, if P and not-P are both true, then it logically follows that Q is true.

Proof

Below is the Lewis argument [10] , a formal proof of the principle of explosion using symbolic logic.

StepPropositionDerivation
1Premise [lower-alpha 3]
2 Conjunction elimination (1)
3 Conjunction elimination (1)
4 Disjunction introduction (2)
5 Disjunctive syllogism (4,3)

This proof was published by C. I. Lewis and is named after him, though versions of it were known to medieval logicians. [11] [12] [10]

This is just the symbolic version of the informal argument given in the introduction, with standing for "all lemons are yellow" and standing for "Unicorns exist". We start out by assuming that (1) all lemons are yellow and that (2) not all lemons are yellow. From the proposition that all lemons are yellow, we infer that (3) either all lemons are yellow or unicorns exist. But then from this and the fact that not all lemons are yellow, we infer that (4) unicorns exist by disjunctive syllogism.

Semantic argument

An alternate argument for the principle stems from model theory. A sentence is a semantic consequence of a set of sentences only if every model of is a model of . However, there is no model of the contradictory set . A fortiori, there is no model of that is not a model of . Thus, vacuously, every model of is a model of . Thus is a semantic consequence of .

Paraconsistent logic

Paraconsistent logics have been developed that allow for subcontrary-forming operators. Model-theoretic paraconsistent logicians often deny the assumption that there can be no model of and devise semantical systems in which there are such models. Alternatively, they reject the idea that propositions can be classified as true or false. Proof-theoretic paraconsistent logics usually deny the validity of one of the steps necessary for deriving an explosion, typically including disjunctive syllogism, disjunction introduction, and reductio ad absurdum .

Usage

The metamathematical value of the principle of explosion is that for any logical system where this principle holds, any derived theory which proves (or an equivalent form, ) is worthless because all its statements would become theorems, making it impossible to distinguish truth from falsehood. That is to say, the principle of explosion is an argument for the law of non-contradiction in classical logic, because without it all truth statements become meaningless.

Reduction in proof strength of logics without ex falso are discussed in minimal logic.

See also

Notes

  1. Latin: ex falso [sequitur] quodlibet, 'from falsehood, anything [follows]'; or ex contradictione [sequitur] quodlibet, 'from contradiction, anything [follows]'.
  2. Also known as the principle of Pseudo-Scotus (falsely attributed to Duns Scotus).
  3. Burgess2005 uses 2 and 3 as premises instead of this one

Related Research Articles

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "all men are mortal", one can have expressions in the form "for all x, if x is a man, then x is mortal", where "for all x" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.

In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. As a normal form, it is useful in automated theorem proving.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In classical, deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory is clearly inconsistent. Conversely, in an explosive formal system every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

<span class="mw-page-title-main">Contradiction</span> Logical incompatibility between two or more propositions

In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."

<span class="mw-page-title-main">Exclusive or</span> True when either but not both inputs are true

Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ. With multiple inputs, XOR is true if and only if the number of true inputs is odd.

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

Paraconsistent logic is a type of non-classical logic that allows for the coexistence of contradictory statements without leading to a logical explosion, where anything can be proven true. Specifically, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, purposefully excluding the principle of explosion.

Dialetheism is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", dialetheia, or nondualisms.

In mathematical logic, a tautology is a formula or assertion that is true for every possible assignment of values to its variables. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:

References

  1. Carnielli, Walter; Marcos, João (2001). "Ex contradictione non sequitur quodlibet" (PDF). Bulletin of Advanced Reasoning and Knowledge. 1: 89–109.[ permanent dead link ]
  2. Smith, Peter (2020). An Introduction to Formal Logic (2nd ed.). Cambridge University Press. Chapter 17.
  3. MacFarlane, John (2021). Philosophical Logic: A Contemporary Introduction. Routledge. Chapter 7.
  4. Başkent, Can (2013). "Some topological properties of paraconsistent models". Synthese . 190 (18): 4023. doi:10.1007/s11229-013-0246-8. S2CID   9276566.
  5. Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent Logic: Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Springer. ix. doi:10.1007/978-3-319-33205-5. ISBN   978-3-319-33203-1.
  6. Priest, Graham. 2011. "What's so bad about contradictions?" In The Law of Non-Contradicton, edited by Priest, Beal, and Armour-Garb. Oxford: Clarendon Press. p. 25.
  7. 1 2 McKubre-Jordens, Maarten (August 2011). "This is not a carrot: Paraconsistent mathematics". Plus Magazine. Millennium Mathematics Project. Retrieved January 14, 2017.
  8. de Swart, Harrie (2018). Philosophical and Mathematical Logic. Springer. p. 47.
  9. Gamut, L. T. F. (1991). Logic, Language and Meaning, Volume 1. Introduction to Logic. University of Chicago Press. p. 139.
  10. 1 2 MacFarlane, John (2021). Philosophical Logic: A Contemporary Introduction. Routledge. p. 171. ISBN   978-1-315-18524-8.
  11. Lewis, C I; Langford, C H (1959). Symbolic Logic (2nd ed.). Dover. p. 250. ISBN   9780486601700.
  12. Burgess, John P (2005). The Oxford Handbook of Philosophy of Mathematics and Logic (ed Stewart Shapiro). Oxford University Press. p. 732. ISBN   9780195325928.