Consequentia mirabilis (Latin for "admirable consequence"), also known as Clavius's Law, is used in traditional and classical logic to establish the truth of a proposition from the inconsistency of its negation. [1] It is thus related to reductio ad absurdum , but it can prove a proposition using just its own negation and the concept of consistency. For a more concrete formulation, it states that if a proposition is a consequence of its negation, then it is true, for consistency. In formal notation:
Weaker variants of the principle are provable in minimal logic, but the full principle itself is not provable even in intuitionistic logic.
Consequentia mirabilis was a pattern of argument popular in 17th-century Europe that first appeared in a fragment of Aristotle's Protrepticus: "If we ought to philosophise, then we ought to philosophise; and if we ought not to philosophise, then we ought to philosophise (i.e. in order to justify this view); in any case, therefore, we ought to philosophise." [2]
Barnes claims in passing that the term consequentia mirabilis refers only to the inference of the proposition from the inconsistency of its negation, and that the term Lex Clavia (or Clavius' Law) refers to the inference of the proposition's negation from the inconsistency of the proposition. [3]
The following shows what weak forms of the law still holds in minimal logic, which lacks both excluded middle and the principle of explosion.
Frege's theorem states
For this is a form of negation introduction, and then for and using the law of identity, it reduces to
Now for , it follows that . By implication introduction, this is indeed an equivalence,
In minimal logic, the first double-negation in the original implication can optionally also be removed, weakening the forward direction statement to . Here, consequentia mirabilis thus holds whenever . Of course, when adopting the double-negation elimination principle for all propositions, consequentia mirabilis also follows simply because the latter brings minimal logic back to full classical logic.
This shows that already minimal logic validates that a proposition cannot be rejected exactly if this is implied by its negation, and that holds exactly when it is implied by both and .
The weak form can also be seen to be equivalent to the principle of non-contradiction . To this end, first note that using modus ponens and implication introduction, the principle is equivalent to . The claim now follows from , i.e. the fact that there are equivalent characterizations of two propositions being mutually exclusive.
The negation of any excluded middle disjunction in particular implies , and thus the weaker disjunction itself. From the above weak form, it thus follows that any double-negated excluded middle statement is valid, in minimal logic. Likewise, this argument shows how the full consequentia mirabilis implies excluded middle.
The following argument shows that the converse also holds. A principle related to case analysis may be formulated as such: If both and each imply , and either of them must hold, then follows. Formally,
For and , the principle of identity now entails
Whenever the second conjunct of the antecedent, , is true, then so is the instance of the principle.
One has that implies . By conjunction elimination, this is in fact an equivalence. In particular, one has
The right hand of this also implies , which gives another demonstration of how double-negation elimination implies consequentia mirabilis, in minimal logic.
In intuitionistical logic, the principle of explosion itself may be formulated as , and therefore . So here,
It was established how consequentia mirabilis follows from double-negation elimination in minimal logic, and how it is equivalent to excluded middle. Two more classical arguments follow.
When excluded middle holds for , one contraposition gives , the propositional form of the reverse disjunctive syllogism. The law is now obtained with and one double-negation elimination.
Related to the last intuitionistic derivation given above, consequentia mirabilis also follow as the special case of Pierce's law
for . That article can be consulted for more, related equivalences.
In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."
In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", written , or . It is interpreted intuitively as being true when is false, and false when is true. For example, if is "Spot runs", then "not " is "Spot does not run".
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.
In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
In mathematical logic, a tautology is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic.
In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT.
In mathematics, a set is inhabited if there exists an element .
In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (ℵ0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.
Markov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are nevertheless provable in a constructive context as well.
In constructive mathematics, pseudo-order is a name given to certain binary relations appropriate for modeling continuous orderings.
In proof theory and constructive mathematics, the principle of independence of premise (IP) states that if φ and ∃x θ are sentences in a formal theory and φ → ∃x θ is provable, then ∃x (φ → θ) is provable. Here x cannot be a free variable of φ, while θ can be a predicate depending on it.
Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:
In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.