Principle of bivalence

Last updated

In logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. [1] [2] A logic satisfying this principle is called a two-valued logic [3] or bivalent logic. [2] [4]

Contents

In formal logic, the principle of bivalence becomes a property that a semantics may or may not possess. It is not the same as the law of excluded middle, however, and a semantics may satisfy that law without being bivalent. [2]

The principle of bivalence is studied in philosophical logic to address the question of which natural-language statements have a well-defined truth value. Sentences that predict events in the future, and sentences that seem open to interpretation, are particularly difficult for philosophers who hold that the principle of bivalence applies to all declarative natural-language statements. [2] Many-valued logics formalize ideas that a realistic characterization of the notion of consequence requires the admissibility of premises that, owing to vagueness, temporal or quantum indeterminacy, or reference-failure, cannot be considered classically bivalent. Reference failures can also be addressed by free logics. [5]

Relationship to the law of the excluded middle

The principle of bivalence is related to the law of excluded middle though the latter is a syntactic expression of the language of a logic of the form "P ∨ ¬P". The difference between the principle of bivalence and the law of excluded middle is important because there are logics that validate the law but not the principle. [2] For example, the three-valued Logic of Paradox (LP) validates the law of excluded middle, but not the law of non-contradiction, ¬(P ∧ ¬P), and its intended semantics is not bivalent. [6] In Intuitionistic logic the law of excluded middle does not hold. In classical two-valued logic both the law of excluded middle and the law of non-contradiction hold. [1]

Classical logic

The intended semantics of classical logic is bivalent, but this is not true of every semantics for classical logic. In Boolean-valued semantics (for classical propositional logic), the truth values are the elements of an arbitrary Boolean algebra, "true" corresponds to the maximal element of the algebra, and "false" corresponds to the minimal element. Intermediate elements of the algebra correspond to truth values other than "true" and "false". The principle of bivalence holds only when the Boolean algebra is taken to be the two-element algebra, which has no intermediate elements.

Assigning Boolean semantics to classical predicate calculus requires that the model be a complete Boolean algebra because the universal quantifier maps to the infimum operation, and the existential quantifier maps to the supremum; [7] this is called a Boolean-valued model. All finite Boolean algebras are complete.

Suszko's thesis

In order to justify his claim that true and false are the only logical values, Roman Suszko (1977) observes that every structural Tarskian many-valued propositional logic can be provided with a bivalent semantics. [8]

Criticisms

Future contingents

A famous example [2] is the contingent sea battle case found in Aristotle's work, De Interpretatione , chapter 9:

Imagine P refers to the statement "There will be a sea battle tomorrow."

The principle of bivalence here asserts:

Either it is true that there will be a sea battle tomorrow, or it is false that there will be a sea battle tomorrow.

Aristotle denies to embrace bivalence for such future contingents; [9] Chrysippus, the Stoic logician, did embrace bivalence for this and all other propositions. The controversy continues to be of central importance in both the philosophy of time and the philosophy of logic.[ citation needed ]

One of the early motivations for the study of many-valued logics has been precisely this issue. In the early 20th century, the Polish formal logician Jan Łukasiewicz proposed three truth-values: the true, the false and the as-yet-undetermined. This approach was later developed by Arend Heyting and L. E. J. Brouwer; [2] see Łukasiewicz logic.

Issues such as this have also been addressed in various temporal logics, where one can assert that "Eventually, either there will be a sea battle tomorrow, or there won't be." (Which is true if "tomorrow" eventually occurs.)

Vagueness

Such puzzles as the Sorites paradox and the related continuum fallacy have raised doubt as to the applicability of classical logic and the principle of bivalence to concepts that may be vague in their application. Fuzzy logic and some other multi-valued logics have been proposed as alternatives that handle vague concepts better. Truth (and falsity) in fuzzy logic, for example, comes in varying degrees. Consider the following statement in the circumstance of sorting apples on a moving belt:

This apple is red. [10]

Upon observation, the apple is an undetermined color between yellow and red, or it is mottled both colors. Thus the color falls into neither category " red " nor " yellow ", but these are the only categories available to us as we sort the apples. We might say it is "50% red". This could be rephrased: it is 50% true that the apple is red. Therefore, P is 50% true, and 50% false. Now consider:

This apple is red and it is not-red.

In other words, P and not-P. This violates the law of noncontradiction and, by extension, bivalence. However, this is only a partial rejection of these laws because P is only partially true. If P were 100% true, not-P would be 100% false, and there is no contradiction because P and not-P no longer holds.

However, the law of the excluded middle is retained, because P and not-P implies P or not-P, since "or" is inclusive. The only two cases where P and not-P is false (when P is 100% true or false) are the same cases considered by two-valued logic, and the same rules apply.

Example of a 3-valued logic applied to vague (undetermined) cases: Kleene 1952 [11] (§64, pp. 332–340) offers a 3-valued logic for the cases when algorithms involving partial recursive functions may not return values, but rather end up with circumstances "u" = undecided. He lets "t" = "true", "f" = "false", "u" = "undecided" and redesigns all the propositional connectives. He observes that:

We were justified intuitionistically in using the classical 2-valued logic, when we were using the connectives in building primitive and general recursive predicates, since there is a decision procedure for each general recursive predicate; i.e. the law of the excluded middle is proved intuitionistically to apply to general recursive predicates.

Now if Q(x) is a partial recursive predicate, there is a decision procedure for Q(x) on its range of definition, so the law of the excluded middle or excluded "third" (saying that, Q(x) is either t or f) applies intuitionistically on the range of definition. But there may be no algorithm for deciding, given x, whether Q(x) is defined or not. [...] Hence it is only classically and not intuitionistically that we have a law of the excluded fourth (saying that, for each x, Q(x) is either t, f, or u).

The third "truth value" u is thus not on par with the other two t and f in our theory. Consideration of its status will show that we are limited to a special kind of truth table".

The following are his "strong tables": [12]

~QQVRRtfuQ&RRtfuQ→RRtfuQ=RRtfu
Qt f Qt t t t Qt t f u Qt t f u Qt t f u
f t f t f u f f f f f t t t f f t u
u u u t u u u u f u u t u u u u u u

For example, if a determination cannot be made as to whether an apple is red or not-red, then the truth value of the assertion Q: " This apple is red " is " u ". Likewise, the truth value of the assertion R " This apple is not-red " is " u ". Thus the AND of these into the assertion Q AND R, i.e. " This apple is red AND this apple is not-red " will, per the tables, yield " u ". And, the assertion Q OR R, i.e. " This apple is red OR this apple is not-red " will likewise yield " u ".

See also

Related Research Articles

In logic, the law of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradiction, and the law of identity. However, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws.

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Many-valued logic is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2. Those most popular in the literature are three-valued, four-valued, nine-valued, the finite-valued with more than three values, and the infinite-valued (infinitely-many-valued), such as fuzzy logic and probability logic.

Classical logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In logic, a three-valued logic is any of several many-valued logic systems in which there are three truth values indicating true, false and some third value. This is contrasted with the more commonly known bivalent logics which provide only for true and false.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab of implication such that (ca) ≤ b is equivalent to c ≤ (ab). From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

"Is Logic Empirical?" is the title of two articles that discuss the idea that the algebraic properties of logic may, or should, be empirically determined; in particular, they deal with the question of whether empirical facts about quantum phenomena may provide grounds for revising classical logic as a consistent logical rendering of reality. The replacement derives from the work of Garrett Birkhoff and John von Neumann on quantum logic. In their work, they showed that the outcomes of quantum measurements can be represented as binary propositions and that these quantum mechanical propositions can be combined in a similar way as propositions in classical logic. However, the algebraic properties of this structure are somewhat different from those of classical propositional logic in that the principle of distributivity fails.

Non-classical logics are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.

<span class="mw-page-title-main">Peirce's law</span> Axiom used in logic and philosophy

In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.

In logic, a finite-valued logic is a propositional calculus in which truth values are discrete. Traditionally, in Aristotle's logic, the bivalent logic, also known as binary logic was the norm, as the law of the excluded middle precluded more than two possible values for any proposition. Modern three-valued logic allows for an additional possible truth value.

In logic, an infinite-valued logic is a many-valued logic in which truth values comprise a continuous range. Traditionally, in Aristotle's logic, logic other than bivalent logic was abnormal, as the law of the excluded middle precluded more than two possible values for any proposition. Modern three-valued logic allows for an additional possible truth value and is an example of finite-valued logic in which truth values are discrete, rather than continuous. Infinite-valued logic comprises continuous fuzzy logic, though fuzzy logic in some of its forms can further encompass finite-valued logic. For example, finite-valued logic can be applied in Boolean-valued modeling, description logics, and defuzzification of fuzzy logic.

References

  1. 1 2 Lou Goble (2001). The Blackwell guide to philosophical logic. Wiley-Blackwell. p. 309. ISBN   978-0-631-20693-4.
  2. 1 2 3 4 5 6 7 Paul Tomassi (1999). Logic. Routledge. p. 124. ISBN   978-0-415-16696-6.
  3. Lou Goble (2001). The Blackwell guide to philosophical logic. Wiley-Blackwell. p. 4. ISBN   978-0-631-20693-4.
  4. Mark Hürlimann (2009). Dealing with Real-World Complexity: Limits, Enhancements and New Approaches for Policy Makers. Gabler Verlag. p. 42. ISBN   978-3-8349-1493-4.
  5. Dov M. Gabbay; John Woods (2007). The Many Valued and Nonmonotonic Turn in Logic. The handbook of the history of logic. Vol. 8. Elsevier. p. vii. ISBN   978-0-444-51623-7.
  6. Graham Priest (2008). An introduction to non-classical logic: from if to is. Cambridge University Press. pp. 124–125. ISBN   978-0-521-85433-7.
  7. Morten Heine Sørensen; Paweł Urzyczyn (2006). Lectures on the Curry-Howard isomorphism. Elsevier. pp. 206–207. ISBN   978-0-444-52077-7.
  8. Shramko, Y.; Wansing, H. (2015). "Truth Values, Stanford Encyclopedia of Philosophy".
  9. Jones, Russell E. (2010). "Truth and Contradiction in Aristotle's De Interpretatione 6-9". Phronesis. 55 (1): 26–67. doi:10.1163/003188610X12589452898804. JSTOR   20720827. S2CID   53398648 via JSTOR.
  10. Note the use of the (extremely) definite article: "This" as opposed to a more-vague "The". If "The" is used, it would have to be accompanied with a pointing-gesture to make it definitive. Ff Principia Mathematica (2nd edition), p. 91. Russell & Whitehead observe that this " this " indicates "something given in sensation" and as such it shall be considered "elementary".
  11. Stephen C. Kleene 1952 Introduction to Metamathematics, 6th Reprint 1971, North-Holland Publishing Company, Amsterdam NY, ISBN   0-7294-2130-9.
  12. "Strong tables" is Kleene's choice of words. Note that even though " u " may appear for the value of Q or R, " t " or " f " may, in those occasions, appear as a value in " Q V R ", " Q & R " and " Q → R ". "Weak tables" on the other hand, are "regular", meaning they have " u " appear in all cases when the value " u " is applied to either Q or R or both. Kleene notes that these tables are not the same as the original values of the tables of Łukasiewicz 1920. (Kleene gives these differences on page 335). He also concludes that " u " can mean any or all of the following: "undefined", "unknown (or value immaterial)", "value disregarded for the moment", i.e. it is a third category that does not (ultimately) exclude " t " and " f " (page 335).

Further reading