Future contingent propositions (or simply, future contingents) are statements about states of affairs in the future that are contingent: neither necessarily true nor necessarily false.
The problem of future contingents seems to have been first discussed by Aristotle in chapter 9 of his On Interpretation (De Interpretatione), using the famous sea-battle example. [1] Roughly a generation later, Diodorus Cronus from the Megarian school of philosophy stated a version of the problem in his notorious master argument . [2] The problem was later discussed by Leibniz.
The problem can be expressed as follows. Suppose that a sea-battle will not be fought tomorrow. Then it was also true yesterday (and the week before, and last year) that it will not be fought, since any true statement about what will be the case in the future was also true in the past. But all past truths are now necessary truths; therefore it is now necessarily true in the past, prior and up to the original statement "A sea battle will not be fought tomorrow", that the battle will not be fought, and thus the statement that it will be fought is necessarily false. Therefore, it is not possible that the battle will be fought. In general, if something will not be the case, it is not possible for it to be the case. "For a man may predict an event ten thousand years beforehand, and another may predict the reverse; that which was truly predicted at the moment in the past will of necessity take place in the fullness of time" (De Int. 18b35).
This conflicts with the idea of our own free choice: that we have the power to determine or control the course of events in the future, which seems impossible if what happens, or does not happen, is necessarily going to happen, or not happen. As Aristotle says, if so there would be no need "to deliberate or to take trouble, on the supposition that if we should adopt a certain course, a certain result would follow, while, if we did not, the result would not follow".
Aristotle solved the problem by asserting that the principle of bivalence found its exception in this paradox of the sea battles: in this specific case, what is impossible is that both alternatives can be possible at the same time: either there will be a battle, or there won't. Both options can't be simultaneously taken. Today, they are neither true nor false; but if one is true, then the other becomes false. According to Aristotle, it is impossible to say today if the proposition is correct: we must wait for the contingent realization (or not) of the battle, logic realizes itself afterwards:
For Diodorus, the future battle was either impossible or necessary. Aristotle added a third term, contingency, which saves logic while in the same time leaving place for indetermination in reality. What is necessary is not that there will or that there will not be a battle tomorrow, but the dichotomy itself is necessary:
What exactly al-Farabi posited on the question of future contingents is contentious. Nicholas Rescher argues that al-Farabi's position is that the truth value of future contingents is already distributed in an "indefinite way", whereas Fritz Zimmerman argues that al-Farabi endorsed Aristotle's solution that the truth value of future contingents has not been distributed yet. [3] Peter Adamson claims they are both correct as al-Farabi endorses both perspectives at different points in his writing, depending on how far he is engaging with the question of divine foreknowledge. [3]
Al-Farabi's argument about "indefinite" truth values centers around the idea that "from premises that are contingently true, a contingently true conclusion necessarily follows". [3] This means that even though a future contingent will occur, it may not have done so according to present contingent facts; as such, the truth value of a proposition concerning that future contingent is true, but true in a contingent way. al-Farabi uses the following example; if we argue truly that Zayd will take a trip tomorrow, then he will, but crucially:
There is in Zayd the possibility that he stays home....if we grant that Zayd is capable of staying home or of making the trip, then these two antithetical outcomes are equally possible [3]
Al-Farabi's argument deals with the dilemma of future contingents by denying that the proposition P "it is true at that Zayd will travel at " and the proposition Q "it is true that at that Zayd travels" [3] would lead us to conclude that necessarily if P then necessarily Q.
He denies this by arguing that "the truth of the present statement about Zayd's journey does not exclude the possibility of Zayd’s staying at home: it just excludes that this possibility will be realized". [3]
Leibniz gave another response to the paradox in §6 of Discourse on Metaphysics : "That God does nothing which is not orderly, and that it is not even possible to conceive of events which are not regular." Thus, even a miracle, the Event by excellence, does not break the regular order of things. What is seen as irregular is only a default of perspective, but does not appear so in relation to universal order, and thus possibility exceeds human logics. Leibniz encounters this paradox because according to him:
If everything that happens to Alexander derives from the haecceity of Alexander, then fatalism threatens Leibniz's construction:
Against Aristotle's separation between the subject and the predicate, Leibniz states:
The predicate (what happens to Alexander) must be completely included in the subject (Alexander) "if one understands perfectly the concept of the subject". Leibniz henceforth distinguishes two types of necessity: necessary necessity and contingent necessity, or universal necessity vs singular necessity. Universal necessity concerns universal truths, while singular necessity concerns something necessary that could not be (it is thus a "contingent necessity"). Leibniz hereby uses the concept of compossible worlds. According to Leibniz, contingent acts such as "Caesar crossing the Rubicon" or "Adam eating the apple" are necessary: that is, they are singular necessities, contingents and accidentals, but which concerns the principle of sufficient reason. Furthermore, this leads Leibniz to conceive of the subject not as a universal, but as a singular: it is true that "Caesar crosses the Rubicon", but it is true only of this Caesar at this time, not of any dictator nor of Caesar at any time (§8, 9, 13). Thus Leibniz conceives of substance as plural: there is a plurality of singular substances, which he calls monads. Leibniz hence creates a concept of the individual as such, and attributes to it events. There is a universal necessity, which is universally applicable, and a singular necessity, which applies to each singular substance, or event. There is one proper noun for each singular event: Leibniz creates a logic of singularity, which Aristotle thought impossible (he considered that there could only be knowledge of generality).
One of the early motivations for the study of many-valued logics has been precisely this issue. In the early 20th century, the Polish formal logician Jan Łukasiewicz proposed three truth-values: the true, the false and the as-yet-undetermined. This approach was later developed by Arend Heyting and L. E. J. Brouwer; [4] see Łukasiewicz logic.
Issues such as this have also been addressed in various temporal logics, where one can assert that "Eventually, either there will be a sea battle tomorrow, or there won't be." (Which is true if "tomorrow" eventually occurs.)
By asserting "A sea-fight must either take place tomorrow or not, but it is not necessary that it should take place tomorrow, neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place tomorrow", Aristotle is simply claiming "necessarily (a or not-a)", which is correct.
However, if we then conclude: "If a is the case, then necessarily, a is the case", then this is known as the modal fallacy. [5]
Expressed in another way:
That is, there are no contingent propositions. Every proposition is either necessarily true or necessarily false.
The fallacy arises in the ambiguity of the first premise. If we interpret it close to the English, we get:
However, if we recognize that the English expression (i) is potentially misleading, that it assigns a necessity to what is simply nothing more than a necessary condition, then we get instead as our premises:
From these latter two premises, one cannot validly infer the conclusion:
In logic, the semantic principleof bivalence states that every declarative sentence expressing a proposition has exactly one truth value, either true or false. A logic satisfying this principle is called a two-valued logic or bivalent logic.
The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.
In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.
Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.
Fatalism is a family of related philosophical doctrines that stress the subjugation of all events or actions to fate or destiny, and is commonly associated with the consequent attitude of resignation in the face of future events which are thought to be inevitable.
A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional and modal logic. Their metaphysical status has been a subject of controversy in philosophy, with modal realists such as David Lewis arguing that they are literally existing alternate realities, and others such as Robert Stalnaker arguing that they are not.
In logic, the semantics of logic or formal semantics is the study of the semantics, or interpretations, of formal languages and natural languages usually trying to capture the pre-theoretic notion of logical consequence.
De Interpretatione or On Interpretation is the second text from Aristotle's Organon and is among the earliest surviving philosophical works in the Western tradition to deal with the relationship between language and logic in a comprehensive, explicit, and formal way. The work is usually known by its Latin title.
The principle of sufficient reason states that everything must have a reason or a cause. The principle was articulated and made prominent by Gottfried Wilhelm Leibniz, with many antecedents, and was further used and developed by Arthur Schopenhauer and Sir William Hamilton, 9th Baronet.
The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.
Diodorus Cronus was a Greek philosopher and dialectician connected to the Megarian school. He was most notable for logic innovations, including his master argument formulated in response to Aristotle's discussion of future contingents.
The analytic–synthetic distinction is a semantic distinction used primarily in philosophy to distinguish between propositions that are of two types: analytic propositions and synthetic propositions. Analytic propositions are true or not true solely by virtue of their meaning, whereas synthetic propositions' truth, if any, derives from how their meaning relates to the world.
A priori and a posteriori are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on experience. A priori knowledge is independent from any experience. Examples include mathematics, tautologies and deduction from pure reason. A posteriori knowledge depends on empirical evidence. Examples include most fields of science and aspects of personal knowledge.
In philosophy and logic, contingency is the status of propositions that are neither true under every possible valuation nor false under every possible valuation. A contingent proposition is neither necessarily true nor necessarily false.
Philosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines. According to a common characterization, philosophical logic is the part of the philosophy of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. But other theorists draw the distinction between the philosophy of logic and philosophical logic differently or not at all. Metalogic is closely related to the philosophy of logic as the discipline investigating the properties of formal logical systems, like consistency and completeness.
Stoic logic is the system of propositional logic developed by the Stoic philosophers in ancient Greece.
Logical determinism is the view that a proposition about the future is either necessarily true, or its negation is necessarily true. The argument for this is as follows. By excluded middle, the future tense proposition is either true now, or its negation is true. But what makes it true is the present existence of a state of affairs – a truthmaker. If so, then the future is determined in the sense that the way things are now – namely the state of affairs that makes ‘There will be a sea-battle tomorrow’ or its negation true – determines the way that things will be. Furthermore, if the past is necessary, in the sense that a state of affairs that existed yesterday cannot be altered, then the state of affairs that made the proposition ‘There will be a sea-battle tomorrow’ true cannot be changed, and so the proposition or its negation is necessarily true, and it is either necessarily the case that there will be a sea-battle tomorrow, or necessarily not the case.
The formal fallacy or the modal fallacy is a special type of fallacy that occurs in modal logic. It is the fallacy of placing a proposition in the wrong modal scope, most commonly confusing the scope of what is necessarily true. A statement is considered necessarily true if and only if it is impossible for the statement to be untrue and that there is no situation that would cause the statement to be false. Some philosophers further argue that a necessarily true statement must be true in all possible worlds.