Modal fallacy

Last updated

The formal fallacy or the modal fallacy is a special type of fallacy that occurs in modal logic. It is the fallacy of placing a proposition in the wrong modal scope, [1] most commonly confusing the scope of what is necessarily true. A statement is considered necessarily true if and only if it is impossible for the statement to be untrue and that there is no situation that would cause the statement to be false. Some philosophers further argue that a necessarily true statement must be true in all possible worlds.

In modal logic, a proposition can be necessarily true or false (denoted and , respectively), meaning that it is logically necessary that it is true or false; or it could be possibly true or false (denoted and ), meaning that it is true or false, but it is not logically necessary that it is so: its truth or falseness is contingent . The modal fallacy occurs when there is a confusion of the distinction between the two.

Description

In modal logic, there is an important distinction between what is logically necessary to be true and what is true but not logically necessary to be so. One common form is replacing with . In the first statement, is true given but is not logically necessary to be so.

A common example in everyday life might be the following:

  1. Mickey Mouse is the President of the United States.
  2. The President is at least 35 years old.
  3. Thus, Mickey Mouse is necessarily 35 years or older.

Why is this false?

The conclusion is false, since, even though Mickey Mouse is over 35 years old, there is no logical necessity for him to be. Even though it is certainly true in this world, a possible world can exist in which Mickey Mouse is not yet 35 years old. If instead of adding a stipulation of necessity, the argument just concluded that Mickey Mouse is 35 or older, it would be valid.

Norman Swartz gave the following example of how the modal fallacy can lead one to conclude that the future is already set, regardless of one's decisions; this is based on the "sea battle" example used by Aristotle to discuss the problem of future contingents in his On Interpretation: [2]

Two admirals, A and B, are preparing their navies for a sea battle tomorrow. The battle will be fought until one side is victorious. But the 'laws' of the excluded middle (no third truth-value) and of non-contradiction (not both truth-values), mandate that one of the propositions, 'A wins' and 'B wins', is true (always has been and ever will be) and the other is false (always has been and ever will be). Suppose 'A wins' is today true. Then whatever A does (or fails to do) today will make no difference; similarly, whatever B does (or fails to do) today will make no difference: the outcome is already settled. Or again, suppose 'A wins' is today false. Then no matter what A does today (or fails to do), it will make no difference; similarly, no matter what B does (or fails to do), it will make no difference: the outcome is already settled. Thus, if propositions bear their truth-values timelessly (or unchangingly and eternally), then planning, or as Aristotle put it 'taking care', is illusory in its efficacy. The future will be what it will be, irrespective of our planning, intentions, etc.

Suppose that the statement "A wins" is given by and "B wins" is given by . It is true here that only one of the statements "A wins" or "B wins" must be true. In other words, only one of or is true. In logic syntax, this is equivalent to

(either or is true)

(it is not possible that and are both true at the same time)

The fallacy here occurs because one assumes that and implies and . Thus, one believes that, since one of both events is logically necessarily true, no action by either can change the outcome.

Swartz also argued that the argument from free will suffers from the modal fallacy. [3]

Related Research Articles

<span class="mw-page-title-main">False dilemma</span> Informal fallacy involving falsely limited alternatives

A false dilemma, also referred to as false dichotomy or false binary, is an informal fallacy based on a premise that erroneously limits what options are available. The source of the fallacy lies not in an invalid form of inference but in a false premise. This premise has the form of a disjunctive claim: it asserts that one among a number of alternatives must be true. This disjunction is problematic because it oversimplifies the choice by excluding viable alternatives, presenting the viewer with only two absolute choices when in fact, there could be many.

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false.

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in a philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.

Logical possibility refers to a logical proposition that cannot be disproved, using the axioms and rules of a given system of logic. The logical possibility of a proposition will depend upon the system of logic being considered, rather than on the violation of any single rule. Some systems of logic restrict inferences from inconsistent propositions or even allow for true contradictions. Other logical systems have more than two truth-values instead of a binary of such values. Some assume the system in question is classical propositional logic. Similarly, the criterion for logical possibility is often based on whether or not a proposition is contradictory and as such, is often thought of as the broadest type of possibility.

A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition can be inferred from it; this is known as deductive explosion.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A, and PA to mean it is permitted that A, which is defined as .

A fallacy of necessity is a fallacy in the logic of a syllogism whereby a degree of unwarranted necessity is placed in the conclusion.

In philosophical logic, the concept of an impossible world is used to model certain phenomena that cannot be adequately handled using ordinary possible worlds. An impossible world, , is the same sort of thing as a possible world , except that it is in some sense "impossible." Depending on the context, this may mean that some contradictions, statements of the form are true at , or that the normal laws of logic, metaphysics, and mathematics, fail to hold at , or both. Impossible worlds are controversial objects in philosophy, logic, and semantics. They have been around since the advent of possible world semantics for modal logic, as well as world based semantics for non-classical logics, but have yet to find the ubiquitous acceptance, that their possible counterparts have found in all walks of philosophy.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

In mathematical logic, a tautology is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

<span class="mw-page-title-main">Problem of future contingents</span> Statements involving superpositions of truth

Future contingent propositions are statements about states of affairs in the future that are contingent: neither necessarily true nor necessarily false.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

References

  1. Bennett, Bo. "Modal (Scope) Fallacy". Logically Fallacious. Retrieved 26 August 2017.
  2. Swartz, Norman. "The Modal Fallacy" . Retrieved 26 August 2017.
  3. Swartz, Norman. "Foreknowledge and Free Will". Internet Encyclopedia of Philosophy. Retrieved 26 August 2017.