Complete Boolean algebra

Last updated

In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.

Contents

More generally, if κ is a cardinal then a Boolean algebra is called κ-complete if every subset of cardinality less than κ has a supremum.

Examples

Complete Boolean algebras

Non-complete Boolean algebras

Now let a0, a1, … be pairwise disjoint infinite sets of naturals, and let A0, A1, … be their corresponding equivalence classes in P(ω)/Fin. Then given any upper bound X of A0, A1, … in P(ω)/Fin, we can find a lesser upper bound, by removing from a representative for X one element of each an. Therefore the An have no supremum.

Properties of complete Boolean algebras

The completion of a Boolean algebra

The completion of a Boolean algebra can be defined in several equivalent ways:

The completion of a Boolean algebra A can be constructed in several ways:

If A is a metric space and B its completion then any isometry from A to a complete metric space C can be extended to a unique isometry from B to C. The analogous statement for complete Boolean algebras is not true: a homomorphism from a Boolean algebra A to a complete Boolean algebra C cannot necessarily be extended to a (supremum preserving) homomorphism of complete Boolean algebras from the completion B of A to C. (By Sikorski's extension theorem it can be extended to a homomorphism of Boolean algebras from B to C, but this will not in general be a homomorphism of complete Boolean algebras; in other words, it need not preserve suprema.)

Free κ-complete Boolean algebras

Unless the Axiom of Choice is relaxed, [1] free complete boolean algebras generated by a set do not exist (unless the set is finite). More precisely, for any cardinal κ, there is a complete Boolean algebra of cardinality 2κ greater than κ that is generated as a complete Boolean algebra by a countable subset; for example the Boolean algebra of regular open sets in the product space κω, where κ has the discrete topology. A countable generating set consists of all sets am,n for m, n integers, consisting of the elements x  κω such that x(m) < x(n). (This boolean algebra is called a collapsing algebra, because forcing with it collapses the cardinal κ onto ω.)

In particular the forgetful functor from complete Boolean algebras to sets has no left adjoint, even though it is continuous and the category of Boolean algebras is small-complete. This shows that the "solution set condition" in Freyd's adjoint functor theorem is necessary.

Given a set X, one can form the free Boolean algebra A generated by this set and then take its completion B. However B is not a "free" complete Boolean algebra generated by X (unless X is finite or AC is omitted), because a function from X to a free Boolean algebra C cannot in general be extended to a (supremum-preserving) morphism of Boolean algebras from B to C.

On the other hand, for any fixed cardinal κ, there is a free (or universal) κ-complete Boolean algebra generated by any given set.

See also

Related Research Articles

<span class="mw-page-title-main">Boolean algebra (structure)</span> Algebraic structure modeling logical operations

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

<span class="mw-page-title-main">Power set</span> Mathematical set containing all subsets of a given set

In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , , or 2S. The notation 2S, meaning the set of all functions from S to a given set of two elements (e.g., {0, 1}), is used because the powerset of S can be identified with, equivalent to, or bijective to the set of all the functions from S to the given two elements set.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

<span class="mw-page-title-main">Ultrafilter</span> Maximal proper filter

In the mathematical field of order theory, an ultrafilter on a given partially ordered set is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on

In mathematics, a well-order on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.

In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but is countable, then one says the set is cocountable.

In the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra.

In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety of modal algebras.

In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.

In order theory, a partially ordered set X is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in X is countable.

In mathematics, a free Boolean algebra is a Boolean algebra with a distinguished set of elements, called generators, such that:

  1. Each element of the Boolean algebra can be expressed as a finite combination of generators, using the Boolean operations, and
  2. The generators are as independent as possible, in the sense that there are no relationships among them that do not hold in every Boolean algebra no matter which elements are chosen.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,…, xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.

This is a glossary of set theory.

<span class="mw-page-title-main">Ultrafilter (set theory)</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter is a maximal proper filter: it is a filter on a given non-empty set which is a certain type of non-empty family of subsets of that is not equal to the power set of and that is also "maximal" in that there does not exist any other proper filter on that contains it as a proper subset. Said differently, a proper filter is called an ultrafilter if there exists exactly one proper filter that contains it as a subset, that proper filter (necessarily) being itself.

References

  1. Stavi, Jonathan (1974), "A model of ZF with an infinite free complete Boolean algebra", Israel Journal of Mathematics , 20 (2): 149–163, doi: 10.1007/BF02757883 , S2CID   119543439.