This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(October 2009) |
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Locales and frames form the foundation of pointless topology, which, instead of building on point-set topology, recasts the ideas of general topology in categorical terms, as statements on frames and locales.
Consider a partially ordered set (P, ≤) that is a complete lattice. Then P is a complete Heyting algebra or frame if any of the following equivalent conditions hold:
The entailed definition of Heyting implication is
Using a bit more category theory, we can equivalently define a frame to be a cocomplete cartesian closed poset.
The system of all open sets of a given topological space ordered by inclusion is a complete Heyting algebra.
The objects of the category CHey, the category Frm of frames and the category Loc of locales are complete Heyting algebras. These categories differ in what constitutes a morphism:
The relation of locales and their maps to topological spaces and continuous functions may be seen as follows. Let be any map. The power sets P(X) and P(Y) are complete Boolean algebras, and the map is a homomorphism of complete Boolean algebras. Suppose the spaces X and Y are topological spaces, endowed with the topology O(X) and O(Y) of open sets on X and Y. Note that O(X) and O(Y) are subframes of P(X) and P(Y). If is a continuous function, then preserves finite meets and arbitrary joins of these subframes. This shows that O is a functor from the category Top of topological spaces to Loc, taking any continuous map
to the map
in Loc that is defined in Frm to be the inverse image frame homomorphism
Given a map of locales in Loc, it is common to write for the frame homomorphism that defines it in Frm. Using this notation, is defined by the equation
Conversely, any locale A has a topological space S(A), called its spectrum, that best approximates the locale. In addition, any map of locales determines a continuous map Moreover this assignment is functorial: letting P(1) denote the locale that is obtained as the power set of the terminal set the points of S(A) are the maps in Loc, i.e., the frame homomorphisms
For each we define as the set of points such that It is easy to verify that this defines a frame homomorphism whose image is therefore a topology on S(A). Then, if is a map of locales, to each point we assign the point defined by letting be the composition of with hence obtaining a continuous map This defines a functor from Loc to Top, which is right adjoint to O.
Any locale that is isomorphic to the topology of its spectrum is called spatial, and any topological space that is homeomorphic to the spectrum of its locale of open sets is called sober . The adjunction between topological spaces and locales restricts to an equivalence of categories between sober spaces and spatial locales.
Any function that preserves all joins (and hence any frame homomorphism) has a right adjoint, and, conversely, any function that preserves all meets has a left adjoint. Hence, the category Loc is isomorphic to the category whose objects are the frames and whose morphisms are the meet preserving functions whose left adjoints preserve finite meets. This is often regarded as a representation of Loc, but it should not be confused with Loc itself, whose morphisms are formally the same as frame homomorphisms in the opposite direction.
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.
In mathematics, pointless topology, also called point-free topology and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data.
In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation a → b called implication such that (c ∧ a) ≤ b is equivalent to c ≤ (a → b). From a logical standpoint, A → B is by this definition the weakest proposition for which modus ponens, the inference rule A → B, A ⊢ B, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic.
In mathematics, the Gelfand representation in functional analysis is either of two things:
In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.
In mathematics, a spectral space is a topological space that is homeomorphic to the spectrum of a commutative ring. It is sometimes also called a coherent space because of the connection to coherent topoi.
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.
In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety of modal algebras.
In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.
In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as that remains unchanged during subsequent discussion, and is kept track of during all operations.
In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed categories. Categories without adjoined products may still have an exponential law.
In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F. This assignment gives rise to a functor f∗ from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.
In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.
This is a glossary for the terminology in a mathematical field of functional analysis.