Distributivity (order theory)

Last updated

In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.

Contents

Distributive lattices

Probably the most common type of distributivity is the one defined for lattices, where the formation of binary suprema and infima provide the total operations of join () and meet (). Distributivity of these two operations is then expressed by requiring that the identity

hold for all elements x, y, and z. This distributivity law defines the class of distributive lattices . Note that this requirement can be rephrased by saying that binary meets preserve binary joins. The above statement is known to be equivalent to its order dual

such that one of these properties suffices to define distributivity for lattices. Typical examples of distributive lattice are totally ordered sets, Boolean algebras, and Heyting algebras. Every finite distributive lattice is isomorphic to a lattice of sets, ordered by inclusion (Birkhoff's representation theorem).

Distributivity for semilattices

Hasse diagram for the definition of distributivity for a meet-semilattice. DistrSemilattice.svg
Hasse diagram for the definition of distributivity for a meet-semilattice.

A semilattice is partially ordered set with only one of the two lattice operations, either a meet- or a join-semilattice. Given that there is only one binary operation, distributivity obviously cannot be defined in the standard way. Nevertheless, because of the interaction of the single operation with the given order, the following definition of distributivity remains possible. A meet-semilattice is distributive, if for all a, b, and x:

If abx then there exist a and b such that aa, bb' and x = ab' .

Distributive join-semilattices are defined dually: a join-semilattice is distributive, if for all a, b, and x:

If xab then there exist a and b such that aa, bb and x = ab' .

In either case, a' and b' need not be unique. These definitions are justified by the fact that given any lattice L, the following statements are all equivalent:

Thus any distributive meet-semilattice in which binary joins exist is a distributive lattice. A join-semilattice is distributive if and only if the lattice of its ideals (under inclusion) is distributive. [1]

This definition of distributivity allows generalizing some statements about distributive lattices to distributive semilattices.

Distributivity laws for complete lattices

For a complete lattice, arbitrary subsets have both infima and suprema and thus infinitary meet and join operations are available. Several extended notions of distributivity can thus be described. For example, for the infinite distributive law, finite meets may distribute over arbitrary joins, i.e.

may hold for all elements x and all subsets S of the lattice. Complete lattices with this property are called frames, locales or complete Heyting algebras . They arise in connection with pointless topology and Stone duality. This distributive law is not equivalent to its dual statement

which defines the class of dual frames or complete co-Heyting algebras.

Now one can go even further and define orders where arbitrary joins distribute over arbitrary meets. Such structures are called completely distributive lattices. However, expressing this requires formulations that are a little more technical. Consider a doubly indexed family {xj,k | j in J, k in K(j)} of elements of a complete lattice, and let F be the set of choice functions f choosing for each index j of J some index f(j) in K(j). A complete lattice is completely distributive if for all such data the following statement holds:

Complete distributivity is again a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices. Completely distributive complete lattices (also called completely distributive lattices for short) are indeed highly special structures. See the article on completely distributive lattices.

Distributive elements in arbitrary lattices

Pentagon lattice N5 N5 1xyz0.svg
Pentagon lattice N5

In an arbitrary lattice, an element x is called a distributive element if ∀y,z: x ∨ (yz) = (xy) ∧ (xz). An element x is called a dual distributive element if ∀y,z: x ∧ (yz) = (xy) ∨ (xz).

In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa). For example, in the depicted pentagon lattice N5, the element x is distributive, [2] but not dual distributive, since x ∧ (yz) = x ∧ 1 = xz = 0 ∨ z = (xy) ∨ (xz).

In an arbitrary lattice L, the following are equivalent:

In an arbitrary lattice, if x1 and x2 are distributive elements, then so is x1x2. [4]

Literature

Distributivity is a basic concept that is treated in any textbook on lattice and order theory. See the literature given for the articles on order theory and lattice theory. More specific literature includes:

Related Research Articles

In mathematics, pointless topology, also called point-free topology and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data.

<span class="mw-page-title-main">Complete lattice</span> Partially ordered set in which all subsets have both a supremum and infimum

In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete.

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab called implication such that (ca) ≤ b is equivalent to c ≤ (ab). From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic.

In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.

<span class="mw-page-title-main">Mathematical morphology</span> Theory and technique for handling geometrical structures

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.

In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist.

In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice xy and a monoid xy which admits operations x\z and z/y, loosely analogous to division or implication, when xy is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.

<span class="mw-page-title-main">Join and meet</span> Concept in order theory

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum of denoted and similarly, the meet of is the infimum, denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.

In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets.

In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself. The conjecture that every distributive lattice is a congruence lattice is true for all distributive lattices with at most 1 compact elements, but F. Wehrung provided a counterexample for distributive lattices with ℵ2 compact elements using a construction based on Kuratowski's free set theorem.

In abstract algebra, a skew lattice is an algebraic structure that is a non-commutative generalization of a lattice. While the term skew lattice can be used to refer to any non-commutative generalization of a lattice, since 1989 it has been used primarily as follows.

In mathematics, in the area of order theory, a free lattice is the free object corresponding to a lattice. As free objects, they have the universal property.

In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice L with bottom element 0, an element xL is said to have a pseudocomplement if there exists a greatest element x* ∈ L with the property that xx* = 0. More formally, x* = max{ yL | xy = 0 }. The lattice L itself is called a pseudocomplemented lattice if every element of L is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition, a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra. However this latter term may have other meanings in other areas of mathematics.

References

  1. G. Grätzer (2011). Lattice Theory: Foundation. Springer/Birkhäuser.; here: Sect. II.5.1, p.167
  2. George Grätzer (2003). General Lattice Theory (2nd ed.). Basel: Birkhäuser. ISBN   3-7643-6996-5. Here: Def. III.2.1 and the subsequent remark, p.181.
  3. Grätzer (2003), Thm.III.2.2 [originally by O. Ore 1935], p.181-182.
  4. Grätzer (2003), Thm.III.2.9.(i), p.188