False (logic)

Last updated

In logic, false [1] or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. [2] Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . [3] [4]

Contents

Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.e. a nullary connective), , is introduced, the truth value of which being always false in the sense above. [5] [6] [7] It can be treated as an absurd proposition, and is often called absurdity.

In classical logic and Boolean logic

In Boolean logic, each variable denotes a truth value which can be either true (1), or false (0).

In a classical propositional calculus, each proposition will be assigned a truth value of either true or false. Some systems of classical logic include dedicated symbols for false (0 or ), while others instead rely upon formulas such as p ∧ ¬p and ¬(pp).

In both Boolean logic and Classical logic systems, true and false are opposite with respect to negation; the negation of false gives true, and the negation of true gives false.

truefalse
falsetrue

The negation of false is equivalent to the truth not only in classical logic and Boolean logic, but also in most other logical systems, as explained below.

False, negation and contradiction

In most logical systems, negation, material conditional and false are related as:

¬p ⇔ (p → ⊥)

In fact, this is the definition of negation in some systems, [8] such as intuitionistic logic, and can be proven in propositional calculi where negation is a fundamental connective. Because pp is usually a theorem or axiom, a consequence is that the negation of false (¬ ⊥) is true.

A contradiction is the situation that arises when a statement that is assumed to be true is shown to entail false (i.e., φ ⊢ ⊥). Using the equivalence above, the fact that φ is a contradiction may be derived, for example, from ⊢ ¬φ. A statement that entails false itself is sometimes called a contradiction, and contradictions and false are sometimes not distinguished, especially due to the Latin term falsum being used in English to denote either, but false is one specific proposition.

Logical systems may or may not contain the principle of explosion (ex falso quodlibet in Latin), ⊥ ⊢ φ for all φ. By that principle, contradictions and false are equivalent, since each entails the other.

Consistency

A formal theory using the "" connective is defined to be consistent, if and only if the false is not among its theorems. In the absence of propositional constants, some substitutes (such as the ones described above) may be used instead to define consistency.

See also

Related Research Articles

<span class="mw-page-title-main">Logical disjunction</span> Logical connective OR

In logic, disjunction, also known as logical disjunction or logical or or logical addition or inclusive disjunction, is a logical connective typically notated as and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula , assuming that abbreviates "it is sunny" and abbreviates "it is warm".

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Logical conjunction</span> Logical connective AND

In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as or or (prefix) or or in which is the most modern and widely used.

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, equivalence, and negation. Some sources include other connectives, as in the table below.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

<span class="mw-page-title-main">Contradiction</span> Logical incompatibility between two or more propositions

In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

Paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, which reject the principle of explosion.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ, and the two have at least one atomic variable symbol in common, then there is a formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ implies ρ, and ρ implies ψ. The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's interpolation theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the Craig–Lyndon theorem.

Non-classical logics are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.

In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:

In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as , disjunction (or) denoted as , and the negation (not) denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction, and division. Boolean algebra is therefore a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations.

References

  1. Its noun form is falsity.
  2. Jennifer Fisher, On the Philosophy of Logic, Thomson Wadsworth, 2007, ISBN   0-495-00888-5, p. 17.
  3. Willard Van Orman Quine, Methods of Logic, 4th ed, Harvard University Press, 1982, ISBN   0-674-57176-2, p. 34.
  4. "Truth-value | logic". Encyclopedia Britannica. Retrieved 2020-08-15.
  5. George Edward Hughes and D.E. Londey, The Elements of Formal Logic, Methuen, 1965, p. 151.
  6. Leon Horsten and Richard Pettigrew, Continuum Companion to Philosophical Logic, Continuum International Publishing Group, 2011, ISBN   1-4411-5423-X, p. 199.
  7. Graham Priest, An Introduction to Non-Classical Logic: From If to Is, 2nd ed, Cambridge University Press, 2008, ISBN   0-521-85433-4, p. 105.
  8. Dov M. Gabbay and Franz Guenthner (eds), Handbook of Philosophical Logic, Volume 6, 2nd ed, Springer, 2002, ISBN   1-4020-0583-0, p. 12.