Inverter (logic gate)

Last updated
Traditional NOT gate (inverter) symbol Not-gate-en.svg
Traditional NOT gate (inverter) symbol

In digital logic, an inverter or NOT gate is a logic gate which implements logical negation. It outputs a bit opposite of the bit that is put into it. The bits are typically implemented as two differing voltage levels.

Contents

Description

Inverter truth table
InputOutput
ANOT A
01
10

The NOT gate outputs a zero when given a one, and a one when given a zero. Hence, it inverts its inputs. Colloquially, this inversion of bits is called "flipping" bits. [1] As with all binary logic gates, other pairs of symbols such as true and false, or high and low may be used in lieu of one and zero.

It is equivalent to the logical negation operator (¬) in mathematical logic. Because it has only one input, it is a unary operation and has the simplest type of truth table. It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s.

The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up. Together with the AND gate and the OR gate, any function in binary mathematics may be implemented. All other logic gates may be made from these three. [3]

The terms "programmable inverter" or "controlled inverter" do not refer to this gate; instead, these terms refer to the XOR gate because it can conditionally function like a NOT gate. [1] [3]

Symbols

Not-gate-en.svg
Traditional NOT gate symbol; sometimes the triangle is omitted, or the circle may be placed on the input line [3]
IEC NOT.svg
IEC NOT gate symbol

The traditional symbol for an inverter circuit is a triangle touching a small circle or "bubble". Input and output lines are attached to the symbol; the bubble is typically attached to the output line. To symbolize active-low input, sometimes the bubble is instead placed on the input line. [4] Sometimes only the circle portion of the symbol is used, and it is attached to the input or output of another gate; the symbols for NAND and NOR are formed in this way. [3]

A bar or overline ( ‾ ) above a variable can denote negation (or inversion or complement) performed by a NOT gate. [4] A slash (/) before the variable is also used. [3]

Electronic implementation

An inverter circuit outputs a voltage representing the opposite logic-level to its input. Its main function is to invert the input signal applied. If the applied input is low then the output becomes high and vice versa. Inverters can be constructed using a single NMOS transistor or a single PMOS transistor coupled with a resistor. Since this "resistive-drain" approach uses only a single type of transistor, it can be fabricated at a low cost. However, because current flows through the resistor in one of the two states, the resistive-drain configuration is disadvantaged for power consumption and processing speed. Alternatively, inverters can be constructed using two complementary transistors in a CMOS configuration. This configuration greatly reduces power consumption since one of the transistors is always off in both logic states. [5] Processing speed can also be improved due to the relatively low resistance compared to the NMOS-only or PMOS-only type devices. Inverters can also be constructed with bipolar junction transistors (BJT) in either a resistor–transistor logic (RTL) or a transistor–transistor logic (TTL) configuration.

Digital electronics circuits operate at fixed voltage levels corresponding to a logical 0 or 1 (see binary). An inverter circuit serves as the basic logic gate to swap between those two voltage levels. Implementation determines the actual voltage, but common levels include (0, +5V) for TTL circuits.

Digital building block

This schematic diagram shows the arrangement of NOT gates within a standard 4049 CMOS hex inverting buffer. CMOS 4049 diagram.svg
This schematic diagram shows the arrangement of NOT gates within a standard 4049 CMOS hex inverting buffer.

The inverter is a basic building block in digital electronics. Multiplexers, decoders, state machines, and other sophisticated digital devices may use inverters.

The hex inverter is an integrated circuit that contains six ( hexa- ) inverters. For example, the 7404 TTL chip which has 14 pins and the 4049 CMOS chip which has 16 pins, 2 of which are used for power/referencing, and 12 of which are used by the inputs and outputs of the six inverters (the 4049 has 2 pins with no connection).

Analytical representation

is the analytical representation of NOT gate:

Alternatives

If no specific NOT gates are available, one can be made from the universal NAND or NOR gates, [6] or an XOR gate by setting one input to high.

Desired gateNAND constructionNOR construction
NOT ANSI Labelled.svg NOT from NAND.svg NOT from NOR.svg

Performance measurement

Voltage transfer curve for a 20 mm inverter fabricated at North Carolina State University Inverter voltage transfer curve.png
Voltage transfer curve for a 20 μm inverter fabricated at North Carolina State University

Digital inverter quality is often measured using the voltage transfer curve (VTC), which is a plot of output vs. input voltage. From such a graph, device parameters including noise tolerance, gain, and operating logic levels can be obtained.

Ideally, the VTC appears as an inverted step function – this would indicate precise switching between on and off – but in real devices, a gradual transition region exists. The VTC indicates that for low input voltage, the circuit outputs high voltage; for high input, the output tapers off towards the low level. The slope of this transition region is a measure of quality – steep (close to vertical) slopes yield precise switching.

The tolerance to noise can be measured by comparing the minimum input to the maximum output for each region of operation (on / off).

Linear region as analog amplifier

Since the transition region is steep and approximately linear, a properly-biased CMOS inverter digital logic gate may be used as a high-gain analog linear amplifier [7] [8] [9] [10] [11] or even combined to form an opamp. [12] Maximum gain is achieved when the input and output operating points are the same voltage, which can be biased by connecting a resistor between the output and input. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Logic gate</span> Device performing a Boolean function

A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device.

<span class="mw-page-title-main">Comparator</span> Device that compares two voltages or currents

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).

NMOS or nMOS logic uses n-type (-) MOSFETs to implement logic gates and other digital circuits.

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

<span class="mw-page-title-main">7400-series integrated circuits</span> Series of transistor–transistor logic integrated circuits

The 7400 series is a popular logic family of transistor–transistor logic (TTL) integrated circuits (ICs).

Resistor–transistor logic (RTL), sometimes also known as transistor–resistor logic (TRL), is a class of digital circuits built using resistors as the input network and bipolar junction transistors (BJTs) as switching devices. RTL is the earliest class of transistorized digital logic circuit; it was succeeded by diode–transistor logic (DTL) and transistor–transistor logic (TTL).

In computer engineering, a logic family is one of two related concepts:

<span class="mw-page-title-main">IC power-supply pin</span> Power supply connections for integrated circuits

IC power-supply pins denote a voltage and current supply terminals in electric, electronics engineering, and in Integrated circuit design. Integrated circuits (ICs) have at least two pins that connect to the power rails of the circuit in which they are installed. These are known as the power-supply pins. However, the labeling of the pins varies by IC family and manufacturer. The double subscript notation usually corresponds to a first letter in a given IC family (transistors) notation of the terminals.

The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic – AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all inputs to the AND gate are HIGH, LOW output results. The function can be extended to any number of inputs.

The OR gate is a digital logic gate that implements logical disjunction. The OR gate outputs "true" if any of its inputs are "true"; otherwise it outputs "false". The input and output states are normally represented by different voltage levels.

<span class="mw-page-title-main">Latch-up</span> Short circuit which can occur in MOSFET circuits

In electronics, a latch-up is a type of short circuit which can occur in an integrated circuit (IC). More specifically, it is the inadvertent creation of a low-impedance path between the power supply rails of a MOSFET circuit, triggering a parasitic structure which disrupts proper functioning of the part, possibly even leading to its destruction due to overcurrent. A power cycle is required to correct this situation.

<span class="mw-page-title-main">Depletion-load NMOS logic</span> Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

XOR gate is a digital logic gate that gives a true output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is false. A way to remember XOR is "must have one or the other but not both".

The NAND Boolean function has the property of functional completeness. This means that any Boolean expression can be re-expressed by an equivalent expression utilizing only NAND operations. For example, the function NOT(x) may be equivalently expressed as NAND(x,x). In the field of digital electronic circuits, this implies that it is possible to implement any Boolean function using just NAND gates.

The XNOR gate is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results.

The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the negation of the OR operator. It can also in some senses be seen as the inverse of an AND gate. NOR is a functionally complete operation—NOR gates can be combined to generate any other logical function. It shares this property with the NAND gate. By contrast, the OR operator is monotonic as it can only change LOW to HIGH but not vice versa.

<span class="mw-page-title-main">PMOS logic</span> Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

In electronics, pass transistor logic (PTL) describes several logic families used in the design of integrated circuits. It reduces the count of transistors used to make different logic gates, by eliminating redundant transistors. Transistors are used as switches to pass logic levels between nodes of a circuit, instead of as switches connected directly to supply voltages. This reduces the number of active devices, but has the disadvantage that the difference of the voltage between high and low logic levels decreases at each stage. Each transistor in series is less saturated at its output than at its input. If several devices are chained in series in a logic path, a conventionally constructed gate may be required to restore the signal voltage to the full value. By contrast, conventional CMOS logic switches transistors so the output connects to one of the power supply rails, so logic voltage levels in a sequential chain do not decrease. Simulation of circuits may be required to ensure adequate performance.

A transmission gate (TG) is an analog gate similar to a relay that can conduct in both directions or block by a control signal with almost any voltage potential. It is a CMOS-based switch, in which PMOS passes a strong 1 but poor 0, and NMOS passes strong 0 but poor 1. Both PMOS and NMOS work simultaneously.

References

  1. 1 2 Van Houtven, Laurens (2017). Crypto 101 (PDF). p. 17.
  2. "2.9 Digital Logic Gates" (PDF). University of Babylon.
  3. 1 2 3 4 5 Broesch, James D. (2012). Practical Programmable Circuits: A Guide to PLDs, State Machines, and Microcontrollers. Elsevier Science. p. 19. ISBN   978-0323139267.
  4. 1 2 "Logic NOT Gate Tutorial". Electronics Tutorials. 20 August 2013.
  5. Nair, B. Somanathan (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 240. ISBN   9788120319561.
  6. M. Morris, Mano; R. Kime, Charles (2004). Logic and computer design fundamentals (3 ed.). Prentice Hall. p. 73. ISBN   0133760634.
  7. "Application Note 88: CMOS Linear Applications" (PDF). National Semiconductor . April 2003 [July 1973].
  8. Stonier-Gibson, David. "CMOS gate as linear amplifier". Microcontroller Group, Moorabbin, Melbourne. Archived from the original on 2022-03-31. Retrieved 2023-05-18.
  9. CMOS Inverters as Analog Amplifiers (Adventures in Field Programmable Analog Arrays) , retrieved 2023-05-18, Aaron Lanterman, Georgia Tech
  10. "CMOS-Inverter-as-an-Amplifier | Analog-CMOS-Design || Electronics Tutorial". www.electronics-tutorial.net. Retrieved 2023-05-18.
  11. "Activity: CMOS Amplifier stages - ADALM2000 [Analog Devices Wiki]". wiki.analog.com. Archived from the original on 2022-08-08. Retrieved 2023-05-18.
  12. Weltin-Wu, Colin (2013-11-18). "A true op-amp made from inverters". EDN. Retrieved 2023-05-18.
  13. Bae, Woorham (2019-09-20). "CMOS Inverter as Analog Circuit: An Overview". Journal of Low Power Electronics and Applications. 9 (3): 26. doi: 10.3390/jlpea9030026 . ISSN   2079-9268.