Proof-theoretic semantics

Last updated

Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within a system of inference.

Contents

Overview

Gerhard Gentzen is the founder of proof-theoretic semantics, providing the formal basis for it in his account of cut-elimination for the sequent calculus, and some provocative philosophical remarks about locating the meaning of logical connectives in their introduction rules within natural deduction. The history of proof-theoretic semantics since then has been devoted to exploring the consequences of these ideas.[ citation needed ]

Dag Prawitz extended Gentzen's notion of analytic proof to natural deduction, and suggested that the value of a proof in natural deduction may be understood as its normal form.[ citation needed ] This idea lies at the basis of the Curry–Howard isomorphism, and of intuitionistic type theory. His inversion principle lies at the heart of most modern accounts of proof-theoretic semantics.

Michael Dummett introduced the very fundamental idea of logical harmony, building on a suggestion of Nuel Belnap. In brief, a language, which is understood to be associated with certain patterns of inference, has logical harmony if it is always possible to recover analytic proofs from arbitrary demonstrations, as can be shown for the sequent calculus by means of cut-elimination theorems and for natural deduction by means of normalisation theorems. A language that lacks logical harmony will suffer from the existence of incoherent forms of inference: it will likely be inconsistent.

See also

Related Research Articles

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

In philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

Metalogic is the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths.

Linear logic is a substructural logic proposed by French logician Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics, as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction.

In the logical discipline of proof theory, a structural rule is an inference rule of a sequent calculus that does not refer to any logical connective but instead operates on the sequents directly. Structural rules often mimic the intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics.

In logic, the semantics of logic or formal semantics is the study of the semantics, or interpretations, of formal languages and natural languages usually trying to capture the pre-theoretic notion of logical consequence.

The cut-elimination theorem is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.

In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.

In mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and that does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic.

In logic and mathematics, a formal proof or derivation is a finite sequence of sentences, each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by a rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is not in general effective, therefore there may be no method by which we can always find a proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof.

In mathematical logic, a proof calculus or a proof system is built to prove statements.

Logical harmony, a name coined by Michael Dummett, is a supposed constraint on the rules of inference that can be used in a given logical system.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

Suppes–Lemmon notation is a natural deductive logic notation system developed by E.J. Lemmon. Derived from Suppes' method, it represents natural deduction proofs as sequences of justified steps. Both methods use inference rules derived from Gentzen's 1934/1935 natural deduction system, in which proofs were presented in tree-diagram form rather than in the tabular form of Suppes and Lemmon. Although the tree-diagram layout has advantages for philosophical and educational purposes, the tabular layout is much more convenient for practical applications.

<span class="mw-page-title-main">Cirquent calculus</span>

Cirquent calculus is a proof calculus that manipulates graph-style constructs termed cirquents, as opposed to the traditional tree-style objects such as formulas or sequents. Cirquents come in a variety of forms, but they all share one main characteristic feature, making them different from the more traditional objects of syntactic manipulation. This feature is the ability to explicitly account for possible sharing of subcomponents between different components. For instance, it is possible to write an expression where two subexpressions F and E, while neither one is a subexpression of the other, still have a common occurrence of a subexpression G.

References