The preface paradox, or the paradox of the preface, [1] was introduced by David Makinson in 1965. Similar to the lottery paradox, it presents an argument according to which it can be rational to accept mutually incompatible beliefs. While the preface paradox nullifies a claim contrary to one's belief, it is opposite to Moore's paradox which asserts a claim contrary to one's belief.
The argument runs along these lines:
It is customary for authors of academic books to include in the preface of their books statements such as "any errors that remain are my sole responsibility." Occasionally they go further and actually claim there are errors in the books, with statements such as "the errors that are found herein are mine alone."
(1) Such an author has written a book that contains many assertions, and has factually checked each one carefully, submitted it to reviewers for comment, etc. Thus, he has reason to believe that each assertion he has made is true.
(2) However, he knows, having learned from experience, that, despite his best efforts, there are very likely undetected errors in his book. So he also has good reason to believe that there is at least one assertion in his book that is not true.
Thus, he has good reason, from (1), to rationally believe that each statement in his book is true, while at the same time he has good reason, from (2), to rationally believe that the book contains at least one error. Thus he can rationally believe that the book both does and does not contain at least one error.
In classical deductive logic, a set of statements is inconsistent if it contains a contradiction. The paradox then arises from the contradiction of the author's belief that all of the statements in his book are correct (1) with his belief that at least one of them is not correct (2). To resolve the paradox, one can attack either the contradiction between statements (1) and (2), or the inconsistency of their conjunction.
Probabilistic perspective may restate the statements in other terms, thus resolving the paradox by making them non-contradictory. [2] [3] Even if the author is 99% sure each single statement in his book is true (1), there can still be so many statements in the book that the aggregate probability of some of them being false (2) is very high as well. Since the principles of rational acceptance allows the author to accept a very likely statement as true, he may rationally choose to believe in (1). Same principles may make him rationally believe also in (2).
Another way to resolve the paradox is to reject the inconsistency of both (1) and (2) being true at the same time. This is done by rejecting the conjunction principle, i.e., that belief (or rational belief) in various propositions entails a belief (or rational belief) in their conjunction. [4] Most philosophers intuitively believe the principle to be true, but some (e.g., Kyburg) intuitively believe it to be false. [5] This is similar to Kyburg's solution to the lottery paradox.
Finally, paraconsistent logics provide a means of accepting some contradictory statements without exploding. [6]
The Epimenides paradox reveals a problem with self-reference in logic. It is named after the Cretan philosopher Epimenides of Knossos who is credited with the original statement. A typical description of the problem is given in the book Gödel, Escher, Bach, by Douglas Hofstadter:
Epimenides was a Cretan who made the immortal statement: "All Cretans are liars."
In logic, the law of non-contradiction (LNC) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case" holds.
In logic, the law of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradiction, and the law of identity. However, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws.
In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement. Trying to assign to this statement, the strengthened liar, a classical binary truth value leads to a contradiction.
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites".
Truth is the property of being in accord with fact or reality. In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."
Moore's paradox concerns the apparent absurdity involved in asserting a first-person present-tense sentence such as "It is raining, but I do not believe that it is raining" or "It is raining, but I believe that it is not raining." The first author to note this apparent absurdity was G. E. Moore. These 'Moorean' sentences, as they have become known, are paradoxical in that while they appear absurd, they nevertheless
In mathematical logic, a sequent is a very general kind of conditional assertion.
A non-monotonic logic is a formal logic whose conclusion relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to a theory never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. A monotonic logic cannot handle various reasoning tasks such as reasoning by default, abductive reasoning, some important approaches to reasoning about knowledge, and similarly, belief revision.
A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.
Dialetheism is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", dialetheia, or nondualisms.
In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition can be inferred from it; this is known as deductive explosion.
The lottery paradox arises from Henry E. Kyburg Jr. considering a fair 1,000-ticket lottery that has exactly one winning ticket. If that much is known about the execution of the lottery, it is then rational to accept that some ticket will win.
A self-refuting idea or self-defeating idea is an idea or statement whose falsehood is a logical consequence of the act or situation of holding them to be true. Many ideas are called self-refuting by their detractors, and such accusations are therefore almost always controversial, with defenders stating that the idea is being misunderstood or that the argument is invalid. For these reasons, none of the ideas below are unambiguously or incontrovertibly self-refuting. These ideas are often used as axioms, which are definitions taken to be true, and cannot be used to test themselves, for doing so would lead to only two consequences: consistency or exception (self-contradiction).
Trivialism is the logical theory that all statements are true and that all contradictions of the form "p and not p" are true. In accordance with this, a trivialist is a person who believes everything is true.
Henry E. Kyburg Jr. (1928–2007) was Gideon Burbank Professor of Moral Philosophy and Professor of Computer Science at the University of Rochester, New York, and Pace Eminent Scholar at the Institute for Human and Machine Cognition, Pensacola, Florida. His first faculty posts were at Rockefeller Institute, University of Denver, Wesleyan College, and Wayne State University.
The following is a list of works by philosopher Graham Priest.