Dictatorship mechanism

Last updated

In social choice theory, a dictatorship mechanism is a degenerate voting rule or mechanism where the result depends on only one person's preferences, without considering any other voters. A serial dictatorship is similar, but also designates a series of "backup dictators", who break ties in the original dictator's choices when the dictator is indifferent.

Contents

Formal definition

Non-dictatorship is one of the necessary conditions in Arrow's impossibility theorem. [1] In Social Choice and Individual Values , Kenneth Arrow defines non-dictatorship as:

There is no voter in {1, ..., n} such that, for every set of orderings in the domain of the constitution, and every pair of social states x and y, implies .

Unsurprisingly, a dictatorship is a rule that does not satisfy non-dictatorship. Anonymous voting rules automatically satisfy non-dictatorship (so long as there is more than one voter).

Serial dictatorship

When the dictator is indifferent between two or more best-preferred options, it is possible to choose one of them arbitrarily or randomly, but this will not be strictly Pareto efficient. A more efficient solution is to appoint a secondary dictator, who has a right to choose, from among all the first dictator's best options, the one that they most prefer. If the second dictator is also indifferent between two or more options, then a third dictator chooses among them, and so on; in other words, ties are broken lexicographically. This rule is called serial dictatorship [2] :6 or the priority mechanism.

The priority mechanism is sometimes used in problems of house allocation. For example, when allocating dormitory rooms to students, it is common for academic administrators to care more about avoiding effort than about the students' well-being or fairness. Thus, students are often assigned a pre-specified priority order (e.g. by age, grades, distance, etc.) and is allowed to choose their most preferred room from the available ones.

Properties

Dictatorships often crop up as degenerate cases or exceptions to theorems, e.g. Arrow's theorem. If there are at least three alternatives, dictatorship is the only ranked voting rule that satisfies unrestricted domain , Pareto efficiency , and independence of irrelevant alternatives . Similarly, by Gibbard's theorem, when there are at least three candidates, dictatorship is the only strategyproof rule.

Single-winner

Satisfied criteria include:

Failed criteria include:

Related Research Articles

<span class="mw-page-title-main">Condorcet paradox</span> Self-contradiction of majority rule

In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.

<span class="mw-page-title-main">Arrow's impossibility theorem</span> Proof all ranked voting rules have spoilers

Arrow's impossibility theorem is a key result in social choice theory, showing that no ranking-based decision rule can satisfy the requirements of rational choice theory. Most notably, Arrow showed that no such rule can satisfy independence of irrelevant alternatives, the principle that a choice between two alternatives A and B should not depend on the quality of some third, unrelated option C.

<span class="mw-page-title-main">Social welfare function</span> Function that ranks states of society according to their desirability

In welfare economics and social choice theory, a social welfare function—also called a socialordering, ranking, utility, or choicefunction—is a function that ranks a set of social states by their desirability. Each person's preferences are combined in some way to determine which outcome is considered better by society as a whole. It can be seen as mathematically formalizing Rousseau's idea of a general will.

Independence of irrelevant alternatives (IIA) is a major axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, cognitive science, social choice, fair division, rational choice, artificial intelligence, probability, and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.

The Gibbard–Satterthwaite theorem is a theorem in voting theory. It was first conjectured by the philosopher Michael Dummett and the mathematician Robin Farquharson in 1961 and then proved independently by the philosopher Allan Gibbard in 1973 and economist Mark Satterthwaite in 1975. It deals with deterministic ordinal electoral systems that choose a single winner, and shows that for every voting rule of this form, at least one of the following three things must hold:

  1. The rule is dictatorial, i.e. there exists a distinguished voter who can choose the winner; or
  2. The rule limits the possible outcomes to two alternatives only; or
  3. The rule is not straightforward, i.e. there is no single always-best strategy.
<span class="mw-page-title-main">Random ballot</span> Electoral system with lottery among ballots

A random ballot or random dictatorship is a randomized electoral system where the election is decided on the basis of a single randomly-selected ballot. A closely-related variant is called random serialdictatorship, which repeats the procedure and draws another ballot if multiple candidates are tied on the first ballot.

<span class="mw-page-title-main">May's theorem</span> Social choice theorem on superiority of majority voting

In social choice theory, May's theorem, also called the general possibility theorem, says that majority vote is the unique ranked social choice function between two candidates that satisfies the following criteria:

<span class="mw-page-title-main">Liberal paradox</span> Paradox in social choice

The liberal paradox, also Sen paradox or Sen's paradox, is a logical paradox proposed by Amartya Sen which shows that no means of aggregating individual preferences into a single, social choice, can simultaneously fulfill the following, seemingly mild conditions:

  1. The unrestrictedness condition, or U: every possible ranking of each individual's preferences and all outcomes of every possible voting rule will be considered equally,
  2. The Pareto condition, or P: if everybody individually likes some choice better at the same time, the society in its voting rule as a whole likes it better as well, and
  3. Liberalism, or L : all individuals in a society must have at least one possibility of choosing differently, so that the social choice under a given voting rule changes as well. That is, as an individual liberal, anyone can exert their freedom of choice at least in some decision with tangible results.
<span class="mw-page-title-main">Social choice theory</span> Academic discipline

Social choice theory is a branch of welfare economics that analyzes methods of combining individual opinions, beliefs, or preferences to reach a collective decision or create measures of social well-being. It contrasts with political science in that it is a normative field that studies how societies should make decisions, whereas political science is descriptive. Social choice incorporates insights from economics, mathematics, philosophy, political science, and game theory to find the best ways to combine individual preferences into a coherent whole, called a social welfare function.

<span class="mw-page-title-main">Social Choice and Individual Values</span>

Kenneth Arrow's monograph Social Choice and Individual Values and a theorem within it created modern social choice theory, a rigorous melding of social ethics and voting theory with an economic flavor. Somewhat formally, the "social choice" in the title refers to Arrow's representation of how social values from the set of individual orderings would be implemented under the constitution. Less formally, each social choice corresponds to the feasible set of laws passed by a "vote" under the constitution even if not every individual voted in favor of all the laws.

In cooperative game theory and social choice theory, the Nakamura number measures the degree of rationality of preference aggregation rules, such as voting rules. It is an indicator of the extent to which an aggregation rule can yield well-defined choices.

<span class="mw-page-title-main">Arunava Sen</span> Indian researcher and teacher

Arunava Sen is a professor of economics at the Indian Statistical Institute. He works on Game Theory, Social Choice Theory, Mechanism Design, Voting and Auctions.

<span class="mw-page-title-main">Maximal lotteries</span> Probabilistic Condorcet method

Maximal lotteries refers to a probabilistic voting rule. The method uses preferential ballots and returns a probability distribution of candidates that a majority of voters would weakly prefer to any other.

In economics, dichotomous preferences (DP) are preference relations that divide the set of alternatives to two subsets, "Good" and "Bad".

Random priority (RP), also called Random serial dictatorship (RSD), is a procedure for fair random assignment - dividing indivisible items fairly among people.

In the fields of mechanism design and social choice theory, Gibbard's theorem is a result proven by philosopher Allan Gibbard in 1973. It states that for any deterministic process of collective decision, at least one of the following three properties must hold:

  1. The process is dictatorial, i.e. there is a single voter whose vote chooses the outcome.
  2. The process limits the possible outcomes to two options only.
  3. The process is not straightforward; the optimal ballot for a voter "requires strategic voting", i.e. it depends on their beliefs about other voters' ballots.
<span class="mw-page-title-main">Fractional social choice</span>

Fractional, stochastic, or weighted social choice is a branch of social choice theory in which the collective decision is not a single alternative, but rather a weighted sum of two or more alternatives. For example, if society has to choose between three candidates, then in standard social choice exactly one of these candidates is chosen. By contrast, in fractional social choice it is possible to choose any linear combination of these, e.g. "2/3 of A and 1/3 of B".

Budget-proposal aggregation (BPA) is a problem in social choice theory. A group has to decide on how to distribute its budget among several issues. Each group-member has a different idea about what the ideal budget-distribution should be. The problem is how to aggregate the different opinions into a single budget-distribution program.

The median voting rule or median mechanism is a rule for group decision-making along a one-dimensional domain. Each person votes by writing down his/her ideal value, and the rule selects a single value which is the median of all votes.

In mechanism design, a regret-free truth-telling mechanism is a mechanism in which each player who reveals his true private information does not feel regret after seeing the mechanism outcome. A regret-free mechanism incentivizes agents who want to avoid regret to report their preferences truthfully.

References

  1. Game Theory Second Edition Guillermo Owen Ch 6 pp124-5 Axiom 5 Academic Press, 1982 ISBN   0-12-531150-8
  2. Felix Brandt (2017-10-26). "Probabilistic Social Choice". In Endriss, Ulle (ed.). Trends in Computational Social Choice. Lulu.com. ISBN   978-1-326-91209-3.