Expanding approvals rule

Last updated

An expanding approvals rule(EAR) is a rule for multi-winner elections, which allows agents to express weak ordinal preferences (i.e., ranking with indifferences), and guarantees a form of proportional representation called proportionality for solid coalitions. The family of EAR was presented by Aziz and Lee. [1] [2]

Contents

In general, the EAR algorithm works as follows. Let n denote the number of voters, and k the number of seats to be filled. Initially, each voter is given 1 unit of virtual money. Groups of voters can use their virtual money to "buy" candidates, where the "price" of each candidate is (though the divisor can be slightly different; see highest averages method). The EAR goes rank by rank, starting at rank 1 which corresponds to the top candidates of the voters, and increasing the rank in each iteration. (This is where the term "expanding approvals" comes from: as the rank increases, the number of approved candidates expands.) For each rank r:

  1. EAR checks if there is a candidate who can be afforded by all voters who rank this candidate r-th or better. If there is such a candidate, EAR selects one such candidate c (there are different variants regarding how to select this candidate), and adds c to the committee.
  2. The "price" of n/k is deducted from the balance of candidates who rank c r-th or better (there are different variants regarding how exactly the price is split among them).

Properties

Aziz and Lee [1] prove that EAR satisfies Generalized Proportionality for Solid Coalitions (GPSC) - a property for ordinal weak preferences, that generalizes both Proportionality for solid coalitions (for strict preferences) and Proportional justified representation (for dichotomous preferences). Further, EAR can be computed in polynomial time and satisfies several weak candidate monotonicity properties.

Extensions

Aziz and Lee [2] extended EAR to the setting of combinatorial participatory budgeting.

The Method of Equal Shares (MES) can be seen as a special case of EAR, in which, in step 1, the elected candidate is a candidate that can be purchased in the smallest price (in general, it is the candidate supported by the largest number of voters with remaining funds), and in step 2, the price is deducted as equally as possible (those who have insufficient budget pay all their remaining budget, and the others pay equally). [3]

Single transferable vote (STV) can also be seen as a variant of EAR, in which voters always approve only their top candidate (r=1); however, if no candidate can be "purchased" by voters ranking it first, a candidate whose supporters have the least amount of budget is removed (this brings a new candidate to the top position of these voters). Like EAR, STV satisfies proportionality for solid coalitions. However, EAR allows weak rankings, whereas STV works only with strict rankings. Moreover, EAR has better candidate monotonicity properties. This addressed an open question by Woodall, [4] who asked if there are rules with the same political properties as STV, which are more monotonic.

Related Research Articles

<span class="mw-page-title-main">Monotonicity criterion</span> Property of electoral systems

The monotonicity criterion, also called positive weight, is a principle of social choice theory that says voters should never have a negative effect on an election's results. In other words, increasing a winning candidate's grade should not cause them to lose.

The plurality criterion is a voting system criterion devised by Douglas R. Woodall for ranked voting methods with incomplete ballots. It is stated as follows:

The later-no-harm criterion is a voting system criterion first formulated by Douglas Woodall. Woodall defined the criterion by saying that "[a]dding a later preference to a ballot should not harm any candidate already listed." For example, a ranked voting method in which a voter adding a 3rd preference could reduce the likelihood of their 1st preference being selected, fails later-no-harm.

Proportionality for solid coalitions (PSC) is a fairness criterion for ranked voting systems. It is an adaptation of the proportional representation criterion to voting systems in which there are no parties, the voters can vote directly for candidates, and can rank the candidates in any way they want. This criterion was proposed by the British philosopher and logician Michael Dummett.

Entitlement in fair division describes that proportion of the resources or goods to be divided that a player can expect to receive. In many fair division settings, all agents have equal entitlements, which means that each agent is entitled to 1/n of the resource. But there are practical settings in which agents have different entitlements. Some examples are:

Schulze STV is a draft single transferable vote (STV) ranked voting system designed to achieve proportional representation. It was invented by Markus Schulze, who developed the Schulze method for resolving ties using a Condorcet method. Schulze STV is similar to CPO-STV in that it compares possible winning candidate pairs and selects the Condorcet winner. It is not used in parliamentary elections.

Proportional approval voting (PAV) is a proportional electoral system for multiwinner elections. It is a multiwinner approval method that extends the highest averages method of apportionment commonly used to calculate apportionments for party-list proportional representation. However, PAV allows voters to support only the candidates they approve of, rather than being forced to approve or reject all candidates on a given party list.

The later-no-help criterion is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.

A simultaneous eating algorithm(SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings).

A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.

Combinatorial participatory budgeting,also called indivisible participatory budgeting or budgeted social choice, is a problem in social choice. There are several candidate projects, each of which has a fixed costs. There is a fixed budget, that cannot cover all these projects. Each voter has different preferences regarding these projects. The goal is to find a budget-allocation - a subset of the projects, with total cost at most the budget, that will be funded. Combinatorial participatory budgeting is the most common form of participatory budgeting.

Justified representation (JR) is a criterion of fairness in multiwinner approval voting. It can be seen as an adaptation of the proportional representation criterion to approval voting.

Multiwinner approval voting, also called approval-based committee (ABC) voting, is a multi-winner electoral system that uses approval ballots. Each voter may select ("approve") any number of candidates, and multiple candidates are elected. The number of elected candidates is usually fixed in advance. For example, it can be the number of seats in a country's parliament, or the required number of members in a committee.

Multiwinner voting, also called committee voting or committee elections, is an electoral system in which multiple candidates are elected. The number of elected candidates is usually fixed in advance. For example, it can be the number of seats in a country's parliament, or the required number of members in a committee.

Fractional social choice is a branch of social choice theory in which the collective decision is not a single alternative, but rather a weighted sum of two or more alternatives. For example, if society has to choose between three candidates: A B or C, then in standard social choice, exactly one of these candidates is chosen, while in fractional social choice, it is possible to choose "2/3 of A and 1/3 of B". A common interpretation of the weighted sum is as a lottery, in which candidate A is chosen with probability 2/3 and candidate B is chosen with probability 1/3. Due to this interpretation, fractional social choice is also called random social choice, probabilistic social choice, or stochastic social choice. But it can also be interpreted as a recipe for sharing, for example:

Fractional approval voting is an electoral system using approval ballots, in which the outcome is fractional: for each alternative j there is a fraction pj between 0 and 1, such that the sum of pj is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins and the other candidates lose. The fractions pj can be interpreted in various ways, depending on the setting. Examples are:

Phragmén's voting rules are rules for multiwinner voting. They allow voters to vote for individual candidates rather than parties, but still guarantee proportional representation. They were published by Lars Edvard Phragmén in French and Swedish between 1893 and 1899, and translated to English by Svante Janson in 2016.

The Method of Equal Shares is a proportional method of counting ballots that applies to participatory budgeting, to committee elections, and to simultaneous public decisions. It can be used when the voters vote via approval ballots, ranked ballots or cardinal ballots. It works by dividing the available budget into equal parts that are assigned to each voter. The method is only allowed to use the budget share of a voter to implement projects that the voter voted for. It then repeatedly finds projects that can be afforded using the budget shares of the supporting voters. In contexts other than participatory budgeting, the method works by equally dividing an abstract budget of "voting power".

Multi-issue voting is a setting in which several issues have to be decided by voting. Multi-issue voting raises several considerations, that are not relevant in single-issue voting.

Descending Solid Coalitions (DSC) is a ranked-choice voting system. It is designed to preserve the advantages of instant-runoff voting, while satisfying monotonicity. It was developed by voting theorist Douglas Woodall as an improvement on (and replacement for) the use of the alternative vote.

References

  1. 1 2 Aziz, Haris; Lee, Barton E. (2020-01-01). "The expanding approvals rule: improving proportional representation and monotonicity". Social Choice and Welfare. 54 (1): 1–45. arXiv: 1708.07580 . doi:10.1007/s00355-019-01208-3. ISSN   1432-217X.
  2. 1 2 Aziz, Haris; Lee, Barton E. (2021-05-18). "Proportionally Representative Participatory Budgeting with Ordinal Preferences". Proceedings of the AAAI Conference on Artificial Intelligence. 35 (6): 5110–5118. arXiv: 1911.00864 . doi: 10.1609/aaai.v35i6.16646 . ISSN   2374-3468.
  3. Brill, Markus; Peters, Jannik (2023). "Robust and Verifiable Proportionality Axioms for Multiwinner Voting". arXiv: 2302.01989 [cs.GT].
  4. Woodall, Douglas R. (1997-06-27). "Monotonicity of single-seat preferential election rules". Discrete Applied Mathematics. 77 (1): 81–98. CiteSeerX   10.1.1.545.510 . doi:10.1016/S0166-218X(96)00100-X. ISSN   0166-218X.