Ranked voting

Last updated
Rankballotoval.gif
Ovals
Rankballotname2.gif
Names
Preferential ballot.svg
Numbers
Various types of ranked voting ballot

Ranked voting is any voting system that uses voters' rankings of candidates to choose a single winner or multiple winners. More formally, a ranked system is one that depends only on which of two candidates is preferred by a voter, and as such does not incorporate any information about intensity of preferences. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives them very different properties. In instant-runoff voting (IRV) and the single transferable vote system (STV), lower preferences are used as contingencies (back-up preferences) and are only applied when all higher-ranked preferences on a ballot have been eliminated or when the vote has been cast for a candidate who has been elected and surplus votes need to be transferred.

Contents

Some ranked vote systems use ranks as weights; this type of system is called positional voting. In the Borda method, the 1st, 2nd, 3rd... candidates on each ballot receive 1, 2, 3... points, and the candidate with the fewest points is elected. Thus intensity of preference is assumed to be at ratios of 1 to 2, 2 to 3, etc. Although not typically described as such, the well-known plurality rule can be seen as a ranked voting system where a voter gives a single point to the candidate marked as their choice and zero points to all others, and the candidate with the most points is elected. Taking the ranked ballots of instant-runoff voting and the single transferable vote system as indicating one choice at a time (that is, giving one point to the preference in use and zero points to all others), instant-runoff voting can be seen as a non-degenerate ranked voting systems. It operates as a staged variant of the plurality system that repeatedly eliminate last-place plurality winners if necessary to determine a majority winner. [1]

In the United States and Australia, the terms ranked-choice voting and preferential voting, respectively, almost always refer to instant-runoff voting; however, because these terms have also been used to mean ranked systems in general, many social choice theorists recommend the use of instant-runoff voting in contexts where it could cause confusion. Ranked voting systems, such as Borda count, are usually contrasted with rated voting methods, which allow voters to indicate how strongly they support different candidates (e.g. on a scale from 0 to 10). [2] Ranked vote systems produce more information than X voting systems such as first-past-the-post voting. Rated voting systems produce more information than ordinal ballots; as a result, they are not subject to many of the problems with weighted rank voting (including results like Arrow's theorem). [3] [4] [5]

History of ranked voting

The earliest known proposals for a ranked voting system can be traced to the works of Ramon Llull in the late 13th century, who developed what would later be known as Copeland's method, which is similar to Condorcet's method. Copeland's method was devised by Ramon Llull in his 1299 treatise Ars Electionis, which was discussed by Nicholas of Cusa in the fifteenth century. [6] [7]

A second wave of analysis began when Jean-Charles de Borda published a paper in 1781, advocating for the Borda count, which he called the "order of merit". This methodology drew criticism from the Marquis de Condorcet, who developed his own methods after arguing Borda's approach did not accurately reflect group preferences, because it was vulnerable to spoiler effects and did not always elect the majority-preferred candidate. [6]

Interest in ranked voting continued throughout the 19th century. Danish pioneer Carl Andræ formulated the single transferable vote system, which was adopted by his native Denmark in 1855. This used the contingent ranked vote system. Condorcet had previously considered its single-winner version, the instant-runoff system, but rejected it as pathological. [8] [9] The contingent ranked transferable vote, as used in Single transferable voting, later found common use in cities in North America, Ireland and other parts of the English-speaking world, with single-winner versions, Instant-runoff voting or Alternative voting (now known as supplementary voting), being its companions for single-winner contests. [10]

Theoretical exploration of electoral processes was revived by a 1948 paper from Duncan Black [11] and Kenneth Arrow's investigations into social choice theory, a branch of welfare economics that extends rational choice to include community decision-making processes. [12]

Adoption

Plurality voting is the most common voting system, and has been in widespread use since the earliest democracies. As plurality voting has exhibited weaknesses from its start, especially as soon as a third party joins the race, some individuals turned to transferable votes (facilitated by contingent ranked ballots) to reduce the incidence of wasted votes and unrepresentative election results.[ citation needed ] A form of the single transferable vote system was invented by Carl Andræ in Denmark, where it was used briefly before being abandoned for direct elections in favor of the simpler open list rules. Danish governments used single transferable voting in indirect elections until 1953.[ citation needed ]

At approximately the same time, the single transferable vote system was independently devised by British lawyer Thomas Hare, whose writings soon spread the method throughout the British Empire. Tasmania used STV (called the Hare system) in government elections in the 1890s. STV began permanent and wider adoption throughout Australia beginning in 1907 and the 1910s. [13] The single transferable vote system, using contingent ranked votes, has been adopted in Ireland, South Africa, Malta, and approximately 20 cities each in the United States and Canada. The single transferable vote system has also been used to elect legislators in Canada, South Africa and India.

In more recent years, the use of contingent ranked votes has seen a comeback in the United States. Single-winner ranked voting (specifically, instant-runoff voting) is used to elect politicians in Maine [14] and Alaska. [15] In November 2016, the voters of Maine narrowly passed Question 5, approving ranked-choice voting (instant-runoff voting) for all elections. This was first put to use in 2018, marking the inaugural use of ranked votes in a statewide election in the United States. In November 2020, Alaska voters passed Measure 2, bringing ranked choice voting (instant-runoff voting) into effect from 2022. [16] [17] After a series of electoral pathologies in Alaska's 2022 congressional special election, a poll found 54% of Alaskans supported a repeal of the system. This included a third of the voters who had supported Peltola, the ultimate winner in the election. However, a referendum on the issue in 2024 saw a narrow majority in favour of retention of IRV. [18]

Some local elections in New Zealand and in the U.S. use the multi-winner single transferable vote. [19] STV is also used to elect local authorities in Scotland and Ireland. Nauru uses a rank-weighted positional method called the Dowdall system.

Equal-ranked ballots

In voting with ranked ballots, a tied or equal-rank ballot is one where multiple candidates receive the same rank or rating. In instant runoff and first-preference plurality, such ballots are generally rejected; however, in social choice theory some election systems assume equal-ranked ballots are "split" evenly between all equal-ranked candidates (e.g. in a two-way tie, each candidate receives half a vote). Meanwhile, other election systems, the Borda count and the Condorcet method, can use different rules for handling equal-rank ballots. These rules produce different mathematical properties and behaviors, particularly under strategic voting.

Theoretical foundations of ranked voting

Majority-rule

Many concepts formulated by the Marquis de Condorcet in the 18th century continue to significantly impact the field. One of these concepts is the Condorcet winner, a candidate who would win against any other candidate in a two-way race. A voting system that always elects this candidate is called a Condorcet method; however, it is possible for an election to have no Condorcet winner, a situation called a Condorcet cycle. Suppose an election with 3 candidates A, B, and C has 3 voters. One votes A > C > B, one votes B > A > C, and one votes C > B > A. In this case, no Condorcet winner exists: A cannot be a Condorcet winner as two-thirds of voters prefer B over A. Similarly, B cannot be the winner as two-thirds prefer C over B, and C cannot win as two-thirds prefer A over C. This forms a rock-paper-scissors style cycle with no Condorcet winner.

Social well-being

Voting systems can also be judged on their ability to deliver results that maximize the overall well-being of society, i.e. to choose the best candidate for society as a whole. [20]

Spatial voting models

Spatial voting models, initially proposed by Duncan Black and further developed by Anthony Downs, provide a theoretical framework for understanding electoral behavior. In these models, each voter and candidate is positioned within an ideological space that can span multiple dimensions. It is assumed that voters tend to favor candidates who closely align with their ideological position over those more distant. A political spectrum is an example of a one-dimensional spatial model.

A spatial model of voting IRVCopeland.png
A spatial model of voting

The accompanying diagram presents a simple one-dimensional spatial model, illustrating the voting methods discussed in subsequent sections of this article. It is assumed that supporters of candidate A cast their votes in the order of A > B > C, while candidate C's supporters vote in the sequence of C > B > A. Supporters of candidate B are equally divided between listing A or C as their second preference. From the data in the accompanying table, if there are 100 voters, the distribution of ballots will reflect the positioning of voters and candidates along the ideological spectrum.

Spatial models offer significant insights because they provide an intuitive visualization of voter preferences. These models give rise to an influential theorem—the median voter theorem—attributed to Duncan Black. This theorem stipulates that within a broad range of spatial models, including all one-dimensional models and all symmetric models across multiple dimensions, a Condorcet winner is guaranteed to exist. Moreover, this winner is the candidate closest to the median of the voter distribution. Empirical research has generally found that spatial voting models give a highly accurate explanation of most voting behavior. [21]

Other theorems

Arrow's impossibility theorem is a generalization of Condorcet's result on the impossibility of majority rule. It demonstrates that every ranked voting algorithm is susceptible to the spoiler effect. Gibbard's theorem provides a closely-related corollary, that no voting rule can have a single, always-best strategy that does not depend on other voters' ballots.

Examples

Borda count

The Borda count is a weighted-rank system that assigns scores to each candidate based on their position in each ballot. If m is the total number of candidates, the candidate ranked first on a ballot receives m − 1 points, the second receives m − 2, and so on, until the last-ranked candidate who receives zero. In the given example, candidate B emerges as the winner with 130 out of a total 300 points. While the Borda count is simple to administer, it does not meet the Condorcet criterion. Also, it is heavily affected by the entry of candidates who have no real chance of winning.

Other positional systems

Systems that award points in a similar way but possibly with a different formula are called positional systems. The score vector (m − 1, m − 2, ..., 0) is associated with the Borda count, (1, 1/2, 1/3, ..., 1/m) defines the Dowdall system and (1, 0, ..., 0) equates to first-past-the-post.

Instant-runoff voting

Instant-runoff voting, often conflated with ranked-choice voting in general, is a contingent ranked-vote voting method that recursively eliminates the plurality loser of an election until one candidate has the majority of the remaining votes. In the given example, Candidate A is declared winner in the third round, having received a majority of votes through the accumulation of first-choice votes and redistributed votes from Candidate B. This system embodies the voters' preferences between the final candidates, stopping when a candidate garners the preference of a majority of voters. Instant-runoff voting does not fulfill the Condorcet winner criterion.

Single transferable voting

Single transferable voting is a contingent ranked-vote voting method that elects multiple members. It elects any candidates who achieve quota, and if necessary recursively eliminates the plurality loser at each stage of the vote count and transfers surplus votes of winners until enough are elected by quota or by still being in the running when the field of candidates is thinned to the number of remaining open seats. Because elected members are elected with the same or about the same number of votes, each party popular enough for representation receives a number of seats appropriate to the vote tallies of its candidates. The transfers reduce waste to about one quota - which in a five-seat district is about 17 percent of valid votes; in districts with more members than five, the waste is smaller. All but one quota of votes approximately are used to actually elect someone in the district so the percentage of effective votes is dependably about 80 to 90 percent of valid votes. [22] [23]

Defeat-dropping Condorcet

The defeat-dropping Condorcet methods all look for a Condorcet winner, i.e. a candidate who is not defeated by any other candidate in a one-on-one majority vote. If there is no Condorcet winner, they repeatedly drop (set the margin to zero) for the one-on-one matchups that are closest to being tied, until there is a Condorcet winner. How "closest to being tied" is defined depends on the specific rule. For minimax, the elections with the smallest margin of victory are dropped, whereas in ranked pairs only elections that create a cycle are eligible to be dropped (with defeats being dropped based on the margin of victory).

See also

Related Research Articles

<span class="mw-page-title-main">Two-round system</span> Voting system

The two-round system, also called ballotage, top-two runoff, or two-round plurality, is a single winner voting method. It is sometimes called plurality-runoff, although this term can also be used for other, closely-related systems such as instant-runoff voting or the exhaustive ballot. It falls under the class of plurality-based voting rules, together with instant-runoff and first-past-the-post (FPP). In a two-round system, if no candidate receives a majority of the vote in the first round, the two candidates with the most votes in the first round proceed to a second round where all other candidates are excluded. Both rounds are held under choose-one voting, where the voter marks a single favored candidate.

Strategic or tactical voting is voting in consideration of possible ballots cast by other voters in order to maximize one's satisfaction with the election's results.

<span class="mw-page-title-main">Spoiler effect</span> Losing candidate affecting election result

In social choice theory and politics, a spoiler effect happens when a losing candidate who affects the results of an election simply by participating. Voting rules that are not affected by spoilers are said to be spoilerproof

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Arrow's impossibility theorem</span> Proof all ranked voting rules have spoilers

Arrow's impossibility theorem is a key result in social choice theory, showing that no ranking-based decision rule can satisfy the requirements of rational choice theory. Most notably, Arrow showed that no such rule can satisfy all of a certain set of seemingly simple and reasonable conditions that include independence of irrelevant alternatives, the principle that a choice between two alternatives A and B should not depend on the quality of some third, unrelated option C.

<span class="mw-page-title-main">Voting</span> Method to make collective decisions

Voting refers to the process of choosing officials or policies by casting a ballot, a document used by people to formally express their preferences. Republics and representative democracies are governments where the population chooses representatives by voting.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

The Copeland or Llull method is a ranked-choice voting system based on counting each candidate's pairwise wins and losses.

<span class="mw-page-title-main">Negative responsiveness</span> Property of electoral systems

In social choice, the negative responsiveness, perversity, or additional support paradox is a pathological behavior of some voting rules, where a candidate loses as a result of having "too much support" from some voters, or wins because they had "too much opposition". In other words, increasing (decreasing) a candidate's ranking or rating causes that candidate to lose (win). Electoral systems that do not exhibit perversity are said to satisfy the positive response or monotonicitycriterion.

<span class="mw-page-title-main">Condorcet winner criterion</span> Property of electoral systems

A Condorcet winner is a candidate who would receive the support of more than half of the electorate in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the Condorcet winner criterion. The Condorcet winner criterion extends the principle of majority rule to elections with multiple candidates.

<span class="mw-page-title-main">Median voter theorem</span> Theorem in political science

The median voter theorem in political science and social choice theory, developed by Duncan Black, states that if voters and candidates are distributed along a one-dimensional spectrum and voters have single-peaked preferences, any voting method that is compatible with majority-rule will elect the candidate preferred by the median voter.

<span class="mw-page-title-main">Nanson's method</span> Single-winner electoral system

The Borda count electoral system can be combined with an instant-runoff procedure to create hybrid election methods that are called Nanson method and Baldwin method. Both methods are designed to satisfy the Condorcet criterion, and allow for incomplete ballots and equal rankings.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

<span class="mw-page-title-main">Best-is-worst paradox</span> Same candidate placing first and last in a race

In social choice theory, the best-is-worst paradox occurs when a voting rule declares the same candidate to be both the best and worst possible winner. The worst candidate can be identified by reversing each voter's ballot, then applying the voting rule to the reversed ballots find a new "anti-winner".

Instant-runoff voting (IRV) is a ranked voting method used in single-winner elections. IRV is also known outside the US as the alternative vote (AV). Today it is in use at a national level to elect the Australian House of Representatives, the National Parliament of Papua New Guinea, the President of Ireland and President of India. In Australia it is also used for elections to the legislative assemblies of all states and territories except Tasmania and the Australian Capital Territory, and for the Tasmanian Legislative Council.

Later-no-harm is a property of some ranked-choice voting systems, first described by Douglas Woodall. In later-no-harm systems, increasing the rating or rank of a candidate ranked below the winner of an election cannot cause a higher-ranked candidate to lose. It is a common property in the plurality-rule family of voting systems.

<span class="mw-page-title-main">Borda count</span> Point-based ranked voting system

The Borda method or order of merit is a positional voting rule that gives each candidate a number of points equal to the number of candidates ranked below them: the lowest-ranked candidate gets 0 points, the second-lowest gets 1 point, and so on. Once all votes have been counted, the option or candidate or candidates with the most points is/are the winner or winners.

<span class="mw-page-title-main">Instant-runoff voting</span> Single-winner ranked-choice electoral system

Instant-runoff voting is a single-winner, multi-round elimination rule that uses ranked voting to simulate a series of runoffs with only one vote. In each round, the candidate with the fewest votes counting towards them is eliminated, and the votes are transferred to their next available preference until one of the options reaches a majority of the remaining votes. Instant runoff falls under the plurality-with-elimination family of voting methods, and is thus closely related to rules like the exhaustive ballot and two-round runoff system.

<span class="mw-page-title-main">Electoral system</span> Method by which voters make a choice between options

An electoral or voting system is a set of rules used to determine the results of an election. Electoral systems are used in politics to elect governments, while non-political elections may take place in business, non-profit organisations and informal organisations. These rules govern all aspects of the voting process: when elections occur, who is allowed to vote, who can stand as a candidate, how ballots are marked and cast, how the ballots are counted, how votes translate into the election outcome, limits on campaign spending, and other factors that can affect the result. Political electoral systems are defined by constitutions and electoral laws, are typically conducted by election commissions, and can use multiple types of elections for different offices.

There are a number of different criteria which can be used for voting systems in an election, including the following

<span class="mw-page-title-main">Comparison of voting rules</span> Comparative politics for electoral systems

This article discusses the methods and results of comparing different electoral systems. There are two broad ways to compare voting systems:

  1. Metrics of voter satisfaction, either through simulation or survey.
  2. Adherence to logical criteria.

References

  1. "Bill Status H.424: An act relating to town, city, and village elections for single-seat offices using ranked-choice voting". legislature.vermont.gov. Retrieved 2024-03-23. Condorcet winner. If a candidate is the winning candidate in every paired comparison, the candidate shall be declared the winner of the election.
  2. Riker, William Harrison (1982). Liberalism against populism: a confrontation between the theory of democracy and the theory of social choice. Waveland Pr. pp. 29–30. ISBN   0881333670. OCLC   316034736. Ordinal utility is a measure of preferences in terms of rank orders—that is, first, second, etc. ... Cardinal utility is a measure of preferences on a scale of cardinal numbers, such as the scale from zero to one or the scale from one to ten.
  3. Hamlin, Aaron (2012-10-06). "Podcast 2012-10-06: Interview with Nobel Laureate Dr. Kenneth Arrow". The Center for Election Science. Archived from the original on 2023-06-05.

    Dr. Arrow: Well, I’m a little inclined to think that score systems where you categorize in maybe three or four classes probably (in spite of what I said about manipulation) is probably the best.

  4. Hamlin, Aaron (2012-10-06). "Podcast 2012-10-06: Interview with Nobel Laureate Dr. Kenneth Arrow". The Center for Election Science. Archived from the original on 2023-06-05.

    Dr. Arrow: Well, I’m a little inclined to think that score systems where you categorize in maybe three or four classes (in spite of what I said about manipulation) is probably the best.[...] And some of these studies have been made. In France, [Michel] Balinski has done some studies of this kind which seem to give some support to these scoring methods.

  5. Hamlin, Aaron (2012-10-06). "Podcast 2012-10-06: Interview with Nobel Laureate Dr. Kenneth Arrow". The Center for Election Science. Archived from the original on 2023-06-05.
    CES: Now, you mention that your theorem applies to preferential systems or ranking systems.
    Dr. Arrow: Yes.
    CES: But the system that you're just referring to, approval voting, falls within a class called cardinal systems. So not within ranking systems.
    Dr. Arrow: And as I said, that in effect implies more information.
  6. 1 2 George G. Szpiro, "Numbers Rule: The Vexing Mathematics of Democracy, from Plato to the Present" (2010).
  7. Colomer, Josep M. (2013-02-01). "Ramon Llull: from 'Ars electionis' to social choice theory". Social Choice and Welfare. 40 (2): 317–328. doi:10.1007/s00355-011-0598-2. ISSN   1432-217X.
  8. Nanson, E. J. (1882). "Methods of election: Ware's Method". Transactions and Proceedings of the Royal Society of Victoria. 19: 206. The method was, however, mentioned by Condorcet, but only to be condemned.
  9. Condorcet, Jean-Antoine-Nicolas de Caritat (1788). "On the Constitution and the Functions of Provincial Assemblies". Complete Works of Condorcet (in French). Vol. 13 (published 1804). p. 243. En effet, lorsqu'il y a plus de trois concurrents, le véritable vœu de la pluralité peut être pour un candidat qui n'ait eu aucune des voix dans le premier scrutin.
  10. Farrell and McAllister, Australian Electoral System, p. 60-61
  11. Duncan Black, "On the Rationale of Group Decision-making" (1948).
  12. Arrow, Kenneth Joseph Arrow (1963). Social Choice and Individual Values (PDF). Yale University Press. ISBN   978-0300013641. Archived (PDF) from the original on 2022-10-09.
  13. Farrell and McAllister, The Australian Electoral System, p. 17
  14. "Ranked Choice Voting in Maine". Maine State Legislature. Retrieved 21 October 2021.
  15. "Alaska Better Elections Implementation". Alaska Division of Elections. Retrieved 21 October 2021.
  16. "Ranked Choice Voting in Maine". legislature.maine.gov. State of Maine. 2022-08-23. Retrieved 2022-11-20.
  17. Piper, Kelsey (2020-11-19). "Alaska voters adopt ranked-choice voting in ballot initiative". vox.com. Vox Media. Retrieved 2022-11-20.
  18. "North to the Future: Alaska's Ranked Choice Voting System is Praised and Criticized Nationally". Alaska Public Media.
  19. "New Zealand Cities Voting to Implement Ranked Choice Voting". 19 September 2017.
  20. Weber, Robert J. (September 1978). "Comparison of Public Choice Systems". Cowles Foundation Discussion Papers. Cowles Foundation for Research in Economics: 16, 38, 62. No. 498.
  21. T. N. Tideman and F. Plassman, "Modeling the Outcomes of Vote-Casting in Actual Elections" (2012).
  22. Gallagher, Michael. "Comparing P.R. Electoral Systems. Quotas, Thresholds, Paradoxes, Majorities" (PDF).
  23. "How Ireland's local elections work".