Seat bias

Last updated

Seat bias is a property describing methods of apportionment. These are methods used to allocate seats in a parliament among federal states or among political parties. A method is biased if it systematically favors small parties over large parties, or vice versa. There are several mathematical measures of bias, which can disagree slightly, but all measures broadly agree that rules based on Droop's quota or Jefferson's method are strongly biased in favor of large parties, while rules based on Webster's method, Hill's method, or Hare's quota have low levels of bias, [1] with the differences being sufficiently small that different definitions of bias produce different results. [2]

Contents

Notation

There is a positive integer (=house size), representing the total number of seats to allocate. There is a positive integer representing the number of parties to which seats should be allocated. There is a vector of fractions with , representing entitlements, that is, the fraction of seats to which some party is entitled (out of a total of ). This is usually the fraction of votes the party has won in the elections.

The goal is to find an apportionment method is a vector of integers with , called an apportionment of , where is the number of seats allocated to party i.

An apportionment method is a multi-valued function , which takes as input a vector of entitlements and a house-size, and returns as output an apportionment of .

Majorization order

We say that an apportionment method favors small parties more than if, for every t and h, and for every and , implies either or .

If and are two divisor methods with divisor functions and , and whenever , then favors small agents more than . [1] :Thm.5.1

This fact can be expressed using the majorization ordering on vectors. A vector amajorizes another vector b if for all k, the k largest parties receive in a at least as many seats as they receive in b. An apportionment method majorizes another method , if for any house-size and entitlement-vector, majorizes . If and are two divisor methods with divisor functions and , and whenever , then majorizes . Therefore, Adams' method is majorized by Dean's, which is majorized by Hill's, which is majorized by Webster's, which is majorized by Jefferson's. [3]

The shifted-quota methods (largest-remainders) with quota are also ordered by majorization, where methods with smaller s are majorized by methods with larger s. [3]

Averaging over all house sizes

To measure the bias of a certain apportionment method M, one can check, for each pair of entitlements , the set of all possible apportionments yielded by M, for all possible house sizes. Theoretically, the number of possible house sizes is infinite, but since are usually rational numbers, it is sufficient to check the house sizes up to the product of their denominators. For each house size, one can check whether or . If the number of house-sizes for which equals the number of house-sizes for which , then the method is unbiased. The only unbiased method, by this definition, is Webster's method. [1] :Prop.5.2

Averaging over all entitlement-pairs

One can also check, for each pair of possible allocations , the set of all entitlement-pairs for which the method M yields the allocations (for ). Assuming the entitlements are distributed uniformly at random, one can compute the probability that M favors state 1 vs. the probability that it favors state 2. For example, the probability that a state receiving 2 seats is favored over a state receiving 4 seats is 75% for Adams, 63.5% for Dean, 57% for Hill, 50% for Webster, and 25% for Jefferson. [1] :Prop.5.2 The unique proportional divisor method for which this probability is always 50% is Webster. [1] :Thm.5.2 There are other divisor methods yielding a probability of 50%, but they do not satisfy the criterion of proportionality as defined in the "Basic requirements" section above. The same result holds if, instead of checking pairs of agents, we check pairs of groups of agents. [1] :Thm.5.3

Averaging over all entitlement-vectors

One can also check, for each vector of entitlements (each point in the standard simplex), what is the seat bias of the agent with the k-th highest entitlement. Averaging this number over the entire standard simplex gives a seat bias formula.

Stationary divisor methods

For each stationary divisor method, i.e. one where seats correspond to a divisor , and electoral threshold : [4] :Sub.7.10

In particular, Webster's method is the only unbiased one in this family. The formula is applicable when the house size is sufficiently large, particularly, when . When the threshold is negligible, the third term can be ignored. Then, the sum of mean biases is:

, when the approximation is valid for .

Since the mean bias favors large parties when , there is an incentive for small parties to form party alliances (=coalitions). Such alliances can tip the bias in their favor. The seat-bias formula can be extended to settings with such alliances. [4] :Sub.7.11

For shifted-quota methods

For each shifted-quota method (largest-remainders method) with quota , when entitlement vectors are drawn uniformly at random from the standard simplex,

In particular, Hamilton's method is the only unbiased one in this family. [4]

Empirical data

Using United States census data, Balinski and Young argued Webster's method is the least median-biased estimator for comparing pairs of states, followed closely by the Huntington-Hill method. [1] However, researchers have found that under other definitions or metrics for bias, the Huntington-Hill method can also be described as least biased. [2]

Related Research Articles

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Cross product</span> Mathematical operation on vectors in 3D space

In mathematics, the cross product or vector product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space, and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such thatwhere In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix.

<span class="mw-page-title-main">Sainte-Laguë method</span> Proportional-representation electoral system

The Webster method, also called the Sainte-Laguë method, is a highest averages apportionment method for allocating seats in a parliament among federal states, or among parties in a party-list proportional representation system. The Sainte-Laguë method shows a more equal seats-to-votes ratio for different sized parties among apportionment methods.

<span class="mw-page-title-main">Highest averages method</span> Rule for proportional allocation

The highest averages, divisor, or divide-and-round methods are a family of apportionment algorithms that aim to fairly divide a legislature between several groups, such as political parties or states. More generally, divisor methods can be used to round shares of a total, e.g. percentage points.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Quota method</span> Proportional-representation voting system

The quota methods are a family of apportionment rules, i.e. algorithms for distributing the seats in a legislative body among a number of administrative divisions. The quota methods are based on calculating a fixed electoral quota, i.e. a given number of votes needed to win a seat. This is used to calculate each party's seat entitlement. Every party is assigned the integer portion of this entitlement, and any seats left over are distributed according to a specified rule.

<span class="mw-page-title-main">Reciprocal lattice</span> Fourier transform of a real-space lattice, important in solid-state physics

The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid. It emerges from the Fourier transform of the lattice associated with the arrangement of the atoms. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, which is the dual of physical space considered as a vector space, and the reciprocal lattice is the sublattice of that space that is dual to the direct lattice.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

<span class="mw-page-title-main">Huntington–Hill method</span> Proportional electoral system

The Huntington–Hill method, sometimes called method of equal proportions, is a highest averages method for assigning seats in a legislature to political parties or states. Since 1941, this method has been used to apportion the 435 seats in the United States House of Representatives following the completion of each decennial census.

In orbital mechanics, Gauss's method is used for preliminary orbit determination from at least three observations of the orbiting body of interest at three different times. The required information are the times of observations, the position vectors of the observation points, the direction cosine vector of the orbiting body from the observation points and general physical data.

<span class="mw-page-title-main">Mathematics of apportionment</span> Mathematical principles

In mathematics and social choice, apportionment problems are a class of fair division problems where the goal is to divide (apportion) a whole number of identical goods fairly between multiple groups with different entitlements. The original example of an apportionment problem involves distributing seats in a legislature between different federal states or political parties. However, apportionment methods can be applied to other situations as well, including bankruptcy problems, inheritance law, manpower planning, and rounding percentages.

House monotonicity is a property of apportionment methods. These are methods for allocating seats in a parliament among federal states. The property says that, if the number of seats in the "house" increases, and the method is re-activated, then no state should have fewer seats than it previously had. A method that fails to satisfy house-monotonicity is said to have the Alabama paradox.

Coherence, also called uniformity or consistency, is a criterion for evaluating rules for fair division. Coherence requires that the outcome of a fairness rule is fair not only for the overall problem, but also for each sub-problem. Every part of a fair division should be fair.

<span class="mw-page-title-main">Vote-ratio monotonicity</span> Property of apportionment methods

Vote-ratio, weight-ratio, or population-ratio monotonicity is a property of some apportionment methods. It says that if the entitlement for grows at a faster rate than , should not lose a seat to . More formally, if the ratio of votes or populations increases, then should not lose a seat while gains a seat. Apportionments violating this rule are called population paradoxes.

Balance or balancedness is a property of apportionment methods, which are methods of allocating identical items between among agens, such as dividing seats in a parliament among political parties or federal states. The property says that, if two agents have exactly the same entitlements, then the number of items they receive should differ by at most one. So if two parties win the same number of votes, or two states have the same populations, then the number of seats they receive should differ by at most one.

<span class="mw-page-title-main">Rank-index method</span> Class of apportionment methods

In apportionment theory, rank-index methods are a set of apportionment methods that generalize the divisor method. These have also been called Huntington methods, since they generalize an idea by Edward Vermilye Huntington.

References

  1. 1 2 3 4 5 6 7 Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote . New Haven: Yale University Press. ISBN   0-300-02724-9.
  2. 1 2 Ernst, Lawrence R. (1994). "Apportionment Methods for the House of Representatives and the Court Challenges". Management Science. 40 (10): 1207–1227. ISSN   0025-1909.
  3. 1 2 Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Preferring Stronger Parties to Weaker Parties: Majorization", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 149–157, doi:10.1007/978-3-319-64707-4_8, ISBN   978-3-319-64707-4 , retrieved 2021-09-01
  4. 1 2 3 Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Favoring Some at the Expense of Others: Seat Biases", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 127–147, doi:10.1007/978-3-319-64707-4_7, ISBN   978-3-319-64707-4 , retrieved 2021-09-01