A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematicsportal |
Maximal lotteries refers to a probabilistic voting rule. The method uses preferential ballots and returns a probability distribution (or linear combination) of candidates that a majority of voters would weakly prefer to any other. [1]
Maximal lotteries satisfy a wide range of desirable properties: they elect the Condorcet winner with probability 1 if it exists [1] and never elect candidates outside the Smith set. [1] Moreover, they satisfy reinforcement, [2] participation, [3] and independence of clones. [2] The probabilistic voting rule that returns all maximal lotteries is the only rule satisfying reinforcement, Condorcet-consistency, and independence of clones. [2] The social welfare function that top-ranks maximal lotteries has been uniquely characterized using Arrow's independence of irrelevant alternatives and Pareto efficiency. [4]
Maximal lotteries do not satisfy the standard notion of strategyproofness, as Allan Gibbard has shown that only random dictatorships can satisfy strategyproofness and ex post efficiency. [5] Maximal lotteries are also nonmonotonic in probabilities, i.e. it is possible that the probability of an alternative decreases when a voter ranks this alternative up. [1] However, they satisfy relative monotonicity, i.e., the probability of relative to that of does not decrease when is improved over . [6]
The support of maximal lotteries, which is known as the essential set or the bipartisan set, has been studied in detail. [7] [8] [9] [10]
Maximal lotteries were first proposed by the French mathematician and social scientist Germain Kreweras in 1965 [11] and popularized by Peter Fishburn. [1] Since then, they have been rediscovered multiple times by economists, [8] mathematicians, [1] [12] political scientists, philosophers, [13] and computer scientists. [14]
Several natural dynamics that converge to maximal lotteries have been observed in biology, physics, chemistry, and machine learning. [15] [16] [17]
The input to this voting system consists of the agents' ordinal preferences over outcomes (not lotteries over alternatives), but a relation on the set of lotteries can be constructed in the following way: if and are lotteries over alternatives, if the expected value of the margin of victory of an outcome selected with distribution in a head-to-head vote against an outcome selected with distribution is positive. In other words, if it is more likely that a randomly selected voter will prefer the alternatives sampled from to the alternative sampled from than vice versa. [4] While this relation is not necessarily transitive, it does always admit at least one maximal element.
It is possible that several such maximal lotteries exist, as a result of ties. However, the maximal lottery is unique whenever there the number of voters is odd. [18] By the same argument, the bipartisan set is uniquely-defined by taking the support of the unique maximal lottery that solves a tournament game. [8]
Maximal lotteries are equivalent to mixed maximin strategies (or Nash equilibria) of the symmetric zero-sum game given by the pairwise majority margins. As such, they have a natural interpretation in terms of electoral competition between two political parties [19] and be computer in polynomial-time via [linear programming].
Suppose there are five voters who have the following preferences over three alternatives:
The pairwise preferences of the voters can be represented in the following skew-symmetric matrix, where the entry for row and column denotes the number of voters who prefer to minus the number of voters who prefer to .
This matrix can be interpreted as a zero-sum game and admits a unique Nash equilibrium (or minimax strategy) where , , . By definition, this is also the unique maximal lottery of the preference profile above. The example was carefully chosen not to have a Condorcet winner. Many preference profiles admit a Condorcet winner, in which case the unique maximal lottery will assign probability 1 to the Condorcet winner. If the last voter in the example above swaps alternatives and in his preference relation, becomes the Condorcet winner and will be selected with probability 1.
Approval voting is a single-winner electoral system in which voters mark all the candidates they support, instead of just choosing one. The candidate with the highest approval rating is elected. Approval voting is currently in use for government elections in St. Louis, Missouri and Fargo, North Dakota.
In social choice theory, Condorcet's voting paradox is a fundamental discovery by the Marquis de Condorcet that majority rule is inherently self-contradictory. The result implies that it is logically impossible for any voting system to guarantee a winner will have support from a majority of voters: in some situations, a majority of voters will prefer A to B, B to C, and also C to A, even if every voter's individual preferences are rational and avoid self-contradiction. Examples of Condorcet's paradox are called Condorcet cycles or cyclic ties.
A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner or Pairwise Majority Rule Winner (PMRW). The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.
In economics, utility is a measure of the satisfaction that a certain person has from a certain state of the world. Over time, the term has been used in at least two different meanings.
Arrow's impossibility theorem is a key result in social choice, discovered by Kenneth Arrow, showing that no ranked voting rule can behave rationally. Specifically, any such rule violates independence of irrelevant alternatives (IIA), the idea that a choice between and should not depend on the quality of a third, unrelated option . The result is most often cited in election science and voting theory, where is called a spoiler candidate. In this context, Arrow's theorem can be restated as showing that no ranked voting rule can eliminate the spoiler effect.
Independence of irrelevant alternatives (IIA) is a major axiom of decision theory which codifies the intuition that a choice between and should not depend on the quality of a third, unrelated outcome . There are several different variations of this axiom, which are generally equivalent under mild conditions. As a result of its importance, the axiom has been independently rediscovered in various forms across a wide variety of fields, including economics, cognitive science, social choice, fair division, rational choice, artificial intelligence, probability, and game theory. It is closely tied to many of the most important theorems in these fields, including Arrow's impossibility theorem, the Balinski-Young theorem, and the money pump arguments.
A random ballot or random dictatorship is a randomized electoral system where the election is decided on the basis of a single randomly-selected ballot. A closely-related variant is called random serialdictatorship, which repeats the procedure and draws another ballot if multiple candidates are tied on the first ballot.
In an election, a candidate is called a majority winner or majority-preferred candidate if more than half of all voters would support them in a one-on-one race against any one of their opponents. Voting systems where a majority winner will always win are said to satisfy the majority-rule principle, because they extend the principle of majority rule to elections with multiple candidates.
In social choice, a no-show paradox is a pathology in some voting rules, where a candidate loses an election as a result of having too many supporters. More formally, a no-show paradox occurs when adding voters who prefer Alice to Bob causes Alice to lose the election to Bob. Voting systems without the no-show paradox are said to satisfy the participation criterion.
In graph theory, a tournament is a directed graph with exactly one edge between each two vertices, in one of the two possible directions. Equivalently, a tournament is an orientation of an undirected complete graph. The name tournament comes from interpreting the graph as the outcome of a round-robin tournament, a game where each player is paired against every other exactly once. In a tournament, the vertices represent the players, and the edges between players point from the winner to the loser.
In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) number of votes in their worst (minimum) matchup is declared the winner.
The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.
In cooperative game theory and social choice theory, the Nakamura number measures the degree of rationality of preference aggregation rules, such as voting rules. It is an indicator of the extent to which an aggregation rule can yield well-defined choices.
In economics, the Debreu's theorems are preference representation theorems—statements about the representation of a preference ordering by a real-valued utility function. The theorems were proved by Gerard Debreu during the 1950s.
A tournament solution is a function that maps an oriented complete graph to a nonempty subset of its vertices. It can informally be thought of as a way to find the "best" alternatives among all of the alternatives that are "competing" against each other in the tournament. Tournament solutions originate from social choice theory, but have also been considered in sports competition, game theory, multi-criteria decision analysis, biology, webpage ranking, and dueling bandit problems.
A major branch of social choice theory is devoted to the comparison of electoral systems, otherwise known as social choice functions. Viewed from the perspective of political science, electoral systems are rules for conducting elections and determining winners from the ballots cast. From the perspective of economics, mathematics, and philosophy, a social choice function is a mathematical function that determines how a society should make choices, given a collection of individual preferences.
A jury theorem is a mathematical theorem proving that, under certain assumptions, a decision attained using majority voting in a large group is more likely to be correct than a decision attained by a single expert. It serves as a formal argument for the idea of wisdom of the crowd, for decision of questions of fact by jury trial, and for democracy in general.
Fractional, stochastic, or weighted social choice is a branch of social choice theory in which the collective decision is not a single alternative, but rather a weighted sum of two or more alternatives. For example, if society has to choose between three candidates, then in standard social choice exactly one of these candidates is chosen. By contrast, in fractional social choice it is possible to choose any linear combination of these, e.g. "2/3 of A and 1/3 of B".
In fractional social choice, fractional approval voting refers to a class of electoral systems using approval ballots, in which the outcome is fractional: for each alternative j there is a fraction pj between 0 and 1, such that the sum of pj is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins and the other candidates lose. The fractions pj can be interpreted in various ways, depending on the setting. Examples are:
Lexicographic dominance is a total order between random variables. It is a form of stochastic ordering. It is defined as follows. Random variable A has lexicographic dominance over random variable B if one of the following holds: