Intransitive dice

Last updated

A set of dice is intransitive (or nontransitive) if it contains three dice, A, B, and C, with the property that A rolls higher than B more than half the time, and B rolls higher than C more than half the time, but where it is not true that A rolls higher than C more than half the time. In other words, a set of dice is intransitive if the binary relationX rolls a higher number than Y more than half the time – on its elements is not transitive. More simply, A normally beats B, B normally beats C, but A does not normally beat C.

Contents

It is possible to find sets of dice with the even stronger property that, for each die in the set, there is another die that rolls a higher number than it more than half the time. This is different in that instead of only "A does not normally beat C" it is now "C normally beats A". Using such a set of dice, one can invent games which are biased in ways that people unused to intransitive dice might not expect (see Example). [1] [2] [3] [4]

Example

An example of intransitive dice (opposite sides have the same value as those shown). Intransitive dice 2.svg
An example of intransitive dice (opposite sides have the same value as those shown).

Consider the following set of dice.

The probability that A rolls a higher number than B, the probability that B rolls higher than C, and the probability that C rolls higher than A are all 5/9, so this set of dice is intransitive. In fact, it has the even stronger property that, for each die in the set, there is another die that rolls a higher number than it more than half the time.

Now, consider the following game, which is played with a set of dice.

  1. The first player chooses a die from the set.
  2. The second player chooses one die from the remaining dice.
  3. Both players roll their die; the player who rolls the higher number wins.

If this game is played with a transitive set of dice, it is either fair or biased in favor of the first player, because the first player can always find a die that will not be beaten by any other dice more than half the time. If it is played with the set of dice described above, however, the game is biased in favor of the second player, because the second player can always find a die that will beat the first player's die with probability 5/9. The following tables show all possible outcomes for all three pairs of dice.

Player 1 chooses die A
Player 2 chooses die C
Player 1 chooses die B
Player 2 chooses die A
Player 1 chooses die C
Player 2 chooses die B
A
C
249
B
A
168
C
B
357
3CAA2ABB1CCC
5CCA4ABB6BBC
7CCA9AAA8BBB

Comment regarding the equivalency of intransitive dice

Though the three intransitive dice A, B, C (first set of dice)

P(A > B) = P(B > C) = P(C > A) = 5/9

and the three intransitive dice A′, B′, C′ (second set of dice)

P(A′ > B′) = P(B′ > C′) = P(C′ > A′) = 5/9

win against each other with equal probability they are not equivalent. While the first set of dice (A, B, C) has a 'highest' die, the second set of dice has a 'lowest' die. Rolling the three dice of a set and always using the highest score for evaluation will show a different winning pattern for the two sets of dice. With the first set of dice, die B will win with the highest probability (11/27) and dice A and C will each win with a probability of 8/27. With the second set of dice, die C′ will win with the lowest probability (7/27) and dice A′ and B′ will each win with a probability of 10/27.

Variations

Efron's dice

Efron's dice are a set of four intransitive dice invented by Bradley Efron.

Representation of Efron's dice Efron dice 2.svg
Representation of Efron's dice

The four dice A, B, C, D have the following numbers on their six faces:

Probabilities

Each die is beaten by the previous die in the list, with a probability of 2/3:

A conditional probability tree can be used to discern the probability with which C rolls higher than D. Efron c d.svg
A conditional probability tree can be used to discern the probability with which C rolls higher than D.

B's value is constant; A beats it on 2/3 rolls because four of its six faces are higher.

Similarly, B beats C with a 2/3 probability because only two of C's faces are higher.

P(C>D) can be calculated by summing conditional probabilities for two events:

  • C rolls 6 (probability 1/3); wins regardless of D (probability 1)
  • C rolls 2 (probability 2/3); wins only if D rolls 1 (probability 1/2)

The total probability of win for C is therefore

With a similar calculation, the probability of D winning over A is

Best overall die

The four dice have unequal probabilities of beating a die chosen at random from the remaining three:

As proven above, die A beats B two-thirds of the time but beats D only one-third of the time. The probability of die A beating C is 4/9 (A must roll 4 and C must roll 2). So the likelihood of A beating any other randomly selected die is:

Similarly, die B beats C two-thirds of the time but beats A only one-third of the time. The probability of die B beating D is 1/2 (only when D rolls 1). So the likelihood of B beating any other randomly selected die is:

Die C beats D two-thirds of the time but beats B only one-third of the time. The probability of die C beating A is 5/9. So the likelihood of C beating any other randomly selected die is:

Finally, die D beats A two-thirds of the time but beats C only one-third of the time. The probability of die D beating B is 1/2 (only when D rolls 5). So the likelihood of D beating any other randomly selected die is:

Therefore, the best overall die is C with a probability of winning of 0.5185. C also rolls the highest average number in absolute terms, 3+1/3. (A's average is 2+2/3, while B's and D's are both 3.)

Variants with equal averages

Note that Efron's dice have different average rolls: the average roll of A is 8/3, while B and D each average 9/3, and C averages 10/3. The intransitive property depends on which faces are larger or smaller, but does not depend on the absolute magnitude of the faces. Hence one can find variants of Efron's dice where the odds of winning are unchanged, but all the dice have the same average roll. For example,

  • A: 7, 7, 7, 7, 1, 1
  • B: 5, 5, 5, 5, 5, 5
  • C: 9, 9, 3, 3, 3, 3
  • D: 8, 8, 8, 2, 2, 2

These variant dice are useful, e.g., to introduce students to different ways of comparing random variables (and how comparing only averages may overlook essential details).

Numbered 1 through 24 dice

A set of four dice using all of the numbers 1 through 24 can be made to be intransitive. With adjacent pairs, one die's probability of winning is 2/3.

For rolling high number, B beats A, C beats B, D beats C, A beats D.

Relation to Efron's dice

These dice are basically the same as Efron's dice, as each number of a series of successive numbers on a single die can all be replaced by the lowest number of the series and afterwards renumbering them.

  • A: 01, 02,16, 17, 18, 1901, 01,16, 16, 16, 160, 0,4, 4, 4, 4
  • B: 03, 04, 05,20, 21, 2203, 03, 03,20, 20, 201, 1, 1,5, 5, 5
  • C: 06, 07, 08, 09,23, 2406, 06, 06, 06,23, 232, 2, 2, 2,6, 6
  • D: 10, 11, 12, 13, 14, 1510, 10, 10, 10, 10, 103, 3, 3, 3, 3, 3

Miwin's dice

Miwin's dice Miwin Wuerfel Titan.gif
Miwin's dice

Miwin's Dice were invented in 1975 by the physicist Michael Winkelmann.

Consider a set of three dice, III, IV and V such that

Then:

Three-dice set with minimal alterations to standard dice

The following intransitive dice have only a few differences compared to 1 through 6 standard dice:

Like Miwin’s set, the probability of A winning versus B (or B vs. C, C vs. A) is 17/36. The probability of a draw, however, is 4/36, so that only 15 out of 36 rolls lose. So the overall winning expectation is higher.

Warren Buffett

Warren Buffett is known to be a fan of intransitive dice. In the book Fortune's Formula: The Untold Story of the Scientific Betting System that Beat the Casinos and Wall Street, a discussion between him and Edward Thorp is described. Buffett and Thorp discussed their shared interest in intransitive dice. "These are a mathematical curiosity, a type of 'trick' dice that confound most people's ideas about probability."

Buffett once attempted to win a game of dice with Bill Gates using intransitive dice. "Buffett suggested that each of them choose one of the dice, then discard the other two. They would bet on who would roll the highest number most often. Buffett offered to let Gates pick his die first. This suggestion instantly aroused Gates's curiosity. He asked to examine the dice, after which he demanded that Buffett choose first." [5]

In 2010, Wall Street Journal magazine quoted Sharon Osberg, Buffett's bridge partner, saying that when she first visited his office 20 years earlier, he tricked her into playing a game with intransitive dice that could not be won and "thought it was hilarious". [6]

Intransitive dice set for more than two players

A number of people have introduced variations of intransitive dice where one can compete against more than one opponent.

Three players

Oskar dice

Oskar van Deventer introduced a set of seven dice (all faces with probability 1/6) as follows: [7]

  • A: 2, 2, 14, 14, 17, 17
  • B: 7, 7, 10, 10, 16, 16
  • C: 5, 5, 13, 13, 15, 15
  • D: 3, 3, 9, 9, 21, 21
  • E: 1, 1, 12, 12, 20, 20
  • F: 6, 6, 8, 8, 19, 19
  • G: 4, 4, 11, 11, 18, 18

One can verify that A beats {B,C,E}; B beats {C,D,F}; C beats {D,E,G}; D beats {A,E,F}; E beats {B,F,G}; F beats {A,C,G}; G beats {A,B,D}. Consequently, for arbitrarily chosen two dice there is a third one that beats both of them. Namely,

  • G beats {A,B}; F beats {A,C}; G beats {A,D}; D beats {A,E}; D beats {A,F}; F beats {A,G};
  • A beats {B,C}; G beats {B,D}; A beats {B,E}; E beats {B,F}; E beats {B,G};
  • B beats {C,D}; A beats {C,E}; B beats {C,F}; F beats {C,G};
  • C beats {D,E}; B beats {D,F}; C beats {D,G};
  • D beats {E,F}; C beats {E,G};
  • E beats {F,G}.

Whatever the two opponents choose, the third player will find one of the remaining dice that beats both opponents' dice.

Grime dice

Dr. James Grime discovered a set of five dice as follows: [8]

  • A: 2, 2, 2, 7, 7, 7
  • B: 1, 1, 6, 6, 6, 6
  • C: 0, 5, 5, 5, 5, 5
  • D: 4, 4, 4, 4, 4, 9
  • E: 3, 3, 3, 3, 8, 8

One can verify that, when the game is played with one set of Grime dice:

  • A beats B beats C beats D beats E beats A (first chain);
  • A beats C beats E beats B beats D beats A (second chain).

However, when the game is played with two such sets, then the first chain remains the same (with one exception discussed later) but the second chain is reversed (i.e. A beats D beats B beats E beats C beats A). Consequently, whatever dice the two opponents choose, the third player can always find one of the remaining dice that beats them both (as long as the player is then allowed to choose between the one-die option and the two-die option):

Sets chosen
by opponents
Winning set of dice
TypeNumber
ABE1
ACE2
ADC2
AED1
BCA1
BDA2
BED2
CDB1
CEB2
DEC1

There are two major issues with this set, however. The first one is that in the two-die option of the game, the first chain should stay exactly the same in order to make the game intransitive. In practice, though, D actually beats C. The second problem is that the third player would have to be allowed to choose between the one-die option and the two-die option – which may be seen as unfair to other players.

Corrected Grime dice

The above issue of D defeating C arises because the dice have 6 faces rather than 5. By replacing the lowest (or highest) face of each die with "reroll" (R), all five dice will function exactly as Dr. James Grime intended:

  • A: R, 2, 2, 7, 7, 7
  • B: R, 1, 6, 6, 6, 6
  • C: R, 5, 5, 5, 5, 5
  • D: R, 4, 4, 4, 4, 9
  • E: R, 3, 3, 3, 8, 8

Alternatively, these faces could be mapped to a set of pentagonal-trapezohedral (10-sided) dice, with each number appearing exactly twice, or to a set of icosahedral (20-sided) dice, with each number appearing four times. This eliminates the need for a "reroll" face.

This solution was discovered by Jon Chambers, an Australian Pre-Service Mathematics Teacher.[ citation needed ]

Four players

A four-player set has not yet been discovered, but it was proved that such a set would require at least 19 dice. [8] [9]

Intransitive 4-sided dice

Tetrahedra can be used as dice with four possible results.

Set 1

P(A > B) = P(B > C) = P(C > A) = 9/16

The following tables show all possible outcomes:

B
A
2666
1BBBB
4ABBB
7AAAA
7AAAA

In "A versus B", A wins in 9 out of 16 cases.

C
B
3558
2CCCC
6BBBC
6BBBC
6BBBC

In "B versus C", B wins in 9 out of 16 cases.

A
C
1477
3CAAA
5CCAA
5CCAA
8CCCC

In "C versus A", C wins in 9 out of 16 cases.


Set 2

P(A > B) = P(B > C) = 10/16, P(C > A) = 9/16

Intransitive 12-sided dice

In analogy to the intransitive six-sided dice, there are also dodecahedra which serve as intransitive twelve-sided dice. The points on each of the dice result in the sum of 114. There are no repetitive numbers on each of the dodecahedra.

Miwin’s dodecahedra (set 1) win cyclically against each other in a ratio of 35:34.

The miwin’s dodecahedra (set 2) win cyclically against each other in a ratio of 71:67.

Set 1:

D IIIpurple125679101114151618
D IVred134589101213141718
D Vdark grey234678111213151617

Set 2:

D VIcyan1234910111213141718
D VIIpear green12567891015161718
D VIIIlight grey345678111213141516

Intransitive prime-numbered 12-sided dice

It is also possible to construct sets of intransitive dodecahedra such that there are no repeated numbers and all numbers are primes. Miwin’s intransitive prime-numbered dodecahedra win cyclically against each other in a ratio of 35:34.

Set 1: The numbers add up to 564.

PD 11grey to blue131729313743475367717383
PD 12grey to red131923294143475961677983
PD 13grey to green171923313741535961717379

Set 2: The numbers add up to 468.

PD 1olive to blue71119232937434753616771
PD 2teal to red71317193137414359616773
PD 3purple to green111317232931414753597173

See also

Related Research Articles

<span class="mw-page-title-main">Backgammon</span> Board and dice game for two players

Backgammon is a two-player board game played with counters and dice on tables boards. It is the most widespread Western member of the large family of tables games, whose ancestors date back nearly 5,000 years to the regions of Mesopotamia and Persia. The earliest record of backgammon itself dates to 17th-century England, being descended from the 16th-century game of Irish.

<span class="mw-page-title-main">Craps</span> Dice game

Craps is a dice game in which players bet on the outcomes of the roll of a pair of dice. Players can wager money against each other or against a bank. Because it requires little equipment, "street craps" can be played in informal settings. While shooting craps, players may use slang terminology to place bets and actions.

<span class="mw-page-title-main">Dice</span> Throwable objects with marked sides, used for generating random numbers

Dice are small, throwable objects with marked sides that can rest in multiple positions. They are used for generating random values, commonly as part of tabletop games, including dice games, board games, role-playing games, and games of chance.

<span class="mw-page-title-main">Sample space</span> Set of all possible outcomes or results of a statistical trial or experiment

In probability theory, the sample space of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U. The elements of a sample space may be numbers, words, letters, or symbols. They can also be finite, countably infinite, or uncountably infinite.

In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory.

<span class="mw-page-title-main">Pig (dice game)</span> Dice game

Pig is a simple dice game first described in print by John Scarne in 1945. Players take turns to roll a single dice as many times as they wish, adding all roll results to a running total, but losing their gained score for the turn if they roll a 1.

In mathematics, intransitivity is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the stronger property of antitransitivity, which describes a relation that is never transitive.

Liar's dice is a class of dice games for two or more players requiring the ability to deceive and to detect an opponent's deception. In "single hand" liar's dice games, each player has a set of dice, all players roll once, and the bids relate to the dice each player can see plus all the concealed dice. In "common hand" games, there is one set of dice which is passed from player to player. The bids relate to the dice as they are in front of the bidder after selected dice have been re-rolled. Originating during the 15th century, the game subsequently spread to Latin American and European countries. In 1993, a variant, Call My Bluff, won the Spiel des Jahres.

<span class="mw-page-title-main">Cee-lo</span> Chinese-American gambling game

Cee-lo is a gambling game played with three six-sided dice. There is not one standard set of rules, but there are some constants that hold true to all sets of rules. The name comes from the Chinese Sì-Wŭ-Liù (四五六), meaning "four-five-six". In America it is also called "See-Low," "Four-Five-Six," "The Three Dice Game," "Roll-off!," and by several alternative spellings, as well as simply "Dice." In China it is also called "Sān Liù Bàozi" (三六豹子), or "Three-Six Leopards". In Japan, it is known as "Chinchiro" (チンチロ) or "Chinchirorin" (チンチロリン).

Farkle, or Farkel, is a dice game similar to or synonymous with 1000/5000/10000, Cosmic Wimpout, Greed, Hot Dice, Squelch, Zilch, or Zonk. Its origins as a folk game are unknown, but the game dates back to at least the mid-1980s. It has been marketed commercially since 1996 under the brand name Pocket Farkel by Legendary Games Inc. While the basic rules are well-established, there is a wide range of variation in both scoring and play.

<span class="mw-page-title-main">Dice 10000</span> Tabletop game

Dice 10,000 also Greed, Dix Mille, Reload, 5-Dice is the name of a family dice game played with 6 dice; it is similar or identical to the commercialized Farkle. It also goes by other names, including Cargoose, Zilch, Zilchers, Foo, Boxcar, Bogus, Lewis' Dice, Crap Out.

Mexico is an elimination-style dice game, in which several players agree to play a set number of rounds. After each round, one player is eliminated. When all players but one have been eliminated, the remaining player wins the game. Owing to its extremely simple play-structure, it is generally pursued as a method of gambling, whereby the final remaining player wins the amount of money wagered by each person who was eliminated in earlier rounds. A variant of the drinking game liar's dice known as Mexican or Mia uses similar dice rolls, but has very different game mechanics.

<span class="mw-page-title-main">Sicherman dice</span> Pair of non-standard six-sided dice

Sicherman dice are a pair of 6-sided dice with non-standard numbers–one with the sides 1, 2, 2, 3, 3, 4 and the other with the sides 1, 3, 4, 5, 6, 8. They are notable as the only pair of 6-sided dice that are not normal dice, bear only positive integers, and have the same probability distribution for the sum as normal dice. They were invented in 1978 by George Sicherman of Buffalo, New York.

<span class="mw-page-title-main">EinStein würfelt nicht!</span>

EinStein würfelt nicht! is a board game, designed by Ingo Althöfer, a professor of applied mathematics in Jena, Germany. It was the official game of an exhibition about Einstein in Germany during the Einstein Year (2005).

Dice notation is a system to represent different combinations of dice in wargames and tabletop role-playing games using simple algebra-like notation such as d8+2.

<span class="mw-page-title-main">Poker dice</span> Type of die

Poker dice are dice which, instead of having number pips, have representations of playing cards upon them. Poker dice have six sides, one each of an Ace, King, Queen, Jack, 10, and 9, and are used to form a poker hand.

<span class="mw-page-title-main">Miwin's dice</span> Set of dice

Miwin's Dice are a set of nontransitive dice invented in 1975 by the physicist Michael Winkelmann. They consist of three different dice with faces bearing numbers from one to nine; opposite faces sum to nine, ten or eleven. The numbers on each die give the sum of 30 and have an arithmetic mean of five.

Horsengoggle is a method of selecting a random person from a group. Unlike some other methods, such as rock paper scissors, one of the features of horsengoggle is that there is always a winner; it is impossible to tie.

<span class="mw-page-title-main">Midnight (game)</span> Dice game

Midnight is a dice game played with six dice.

Go First Dice are a set of dice in which, when rolled together, each die has an equal chance of showing the highest number, the second highest number, and so on.

References

  1. Weisstein, Eric W. "Efron's Dice". Wolfram MathWorld . Retrieved 12 January 2021.
  2. Bogomolny, Alexander. "Non-transitive Dice". Cut the Knot. Archived from the original on 2016-01-12.
  3. Savage, Richard P. (May 1994). "The Paradox of Nontransitive Dice". The American Mathematical Monthly. 101 (5): 429–436. doi:10.2307/2974903. JSTOR   2974903.
  4. Rump, Christopher M. (June 2001). "Strategies for Rolling the Efron Dice". Mathematics Magazine. 74 (3): 212–216. doi:10.2307/2690722. JSTOR   2690722 . Retrieved 12 January 2021.
  5. Bill Gates; Janet Lowe (1998-10-14). Bill Gates speaks: insight from the world's greatest entrepreneur. New York: Wiley. ISBN   9780471293538 . Retrieved 2011-11-29.
  6. "Like a Marriage, Only More Enduring". Yahoo! Finance . The Wall Street Journal. 2010-12-06. Archived from the original on 2010-12-10. Retrieved 2011-11-29.
  7. Pegg, Ed Jr. (2005-07-11). "Tournament Dice". Math Games. Mathematical Association of America. Archived from the original on 2005-08-04. Retrieved 2012-07-06.
  8. 1 2 Grime, James. "Non-transitive Dice". Archived from the original on 2016-05-14.
  9. Reid, Kenneth; McRae, A.A.; Hedetniemi, S.M.; Hedetniemi, Stephen (2004-01-01). "Domination and irredundance in tournaments". The Australasian Journal of Combinatorics [electronic only]. 29.

Sources