In mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. That is, we can find three values , , and where the transitive condition does not hold.
Antitransitivity is a stronger property which describes a relation where, for any three values, the transitivity condition never holds.
Be warned, some authors use the term intransitive to refer to antitransitivity. [1] [2]
A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. A relation is intransitive if it is not transitive. Assuming the relation is named , it is intransitive if:
This statement is equivalent to
For example, the inequality relation, , is intransitive. This can be demonstrated by replacing with and choosing , , and . We have and and it is not true that .
Notice that, for a relation to be intransitive, the transitivity condition just has to be not true at some , , and . It can still hold for others. For example, it holds when , , and , then and and it is true that .
For a more complicated example of intransitivity, consider the relation R on the integers such that a R b if and only if a is a multiple of b or a divisor of b. This relation is intransitive since, for example, 2 R 6 (2 is a divisor of 6) and 6 R 3 (6 is a multiple of 3), but 2 is neither a multiple nor a divisor of 3. This does not imply that the relation is antitransitive (see below); for example, 2 R 6, 6 R 12, and 2 R 12 as well.
An example in biology comes from the food chain. Wolves feed on deer, and deer feed on grass, but wolves do not feed on grass. [3] Thus, the feed on relation among life forms is intransitive, in this sense.
Antitransitivity for a relation says that the transitive condition does not hold for any three values.
In the example above, the feed on relation is not transitive, but it still contains some transitivity: for instance, humans feed on rabbits, rabbits feed on carrots, and humans also feed on carrots.
A relation is antitransitive if this never occurs at all. The formal definition is:
For example, the relation R on the integers, such that a R b if and only if a + b is odd, is intransitive. If a R b and b R c, then either a and c are both odd and b is even, or vice-versa. In either case, a + c is even.
A second example of an antitransitive relation: the defeated relation in knockout tournaments. If player A defeated player B and player B defeated player C, A can have never played C, and therefore, A has not defeated C.
By transposition, each of the following formulas is equivalent to antitransitivity of R:
The term intransitivity is often used when speaking of scenarios in which a relation describes the relative preferences between pairs of options, and weighing several options produces a "loop" of preference:
Rock, paper, scissors; intransitive dice; and Penney's game are examples. Real combative relations of competing species, [5] strategies of individual animals, [6] and fights of remote-controlled vehicles in BattleBots shows ("robot Darwinism") [7] can be cyclic as well.
Assuming no option is preferred to itself i.e. the relation is irreflexive, a preference relation with a loop is not transitive. For if it is, each option in the loop is preferred to each option, including itself. This can be illustrated for this example of a loop among A, B, and C. Assume the relation is transitive. Then, since A is preferred to B and B is preferred to C, also A is preferred to C. But then, since C is preferred to A, also A is preferred to A.
Therefore such a preference loop (or cycle ) is known as an intransitivity.
Notice that a cycle is neither necessary nor sufficient for a binary relation to be not transitive. For example, an equivalence relation possesses cycles but is transitive. Now, consider the relation "is an enemy of" and suppose that the relation is symmetric and satisfies the condition that for any country, any enemy of an enemy of the country is not itself an enemy of the country. This is an example of an antitransitive relation that does not have any cycles. In particular, by virtue of being antitransitive the relation is not transitive.
The game of rock, paper, scissors is an example. The relation over rock, paper, and scissors is "defeats", and the standard rules of the game are such that rock defeats scissors, scissors defeats paper, and paper defeats rock. Furthermore, it is also true that scissors does not defeat rock, paper does not defeat scissors, and rock does not defeat paper. Finally, it is also true that no option defeats itself. This information can be depicted in a table:
rock | scissors | paper | |
---|---|---|---|
rock | 0 | 1 | 0 |
scissors | 0 | 0 | 1 |
paper | 1 | 0 | 0 |
The first argument of the relation is a row and the second one is a column. Ones indicate the relation holds, zero indicates that it does not hold. Now, notice that the following statement is true for any pair of elements x and y drawn (with replacement) from the set {rock, scissors, paper}: If x defeats y, and y defeats z, then x does not defeat z. Hence the relation is antitransitive.
Thus, a cycle is neither necessary nor sufficient for a binary relation to be antitransitive.
It has been suggested that Condorcet voting tends to eliminate "intransitive loops" when large numbers of voters participate because the overall assessment criteria for voters balances out. For instance, voters may prefer candidates on several different units of measure such as by order of social consciousness or by order of most fiscally conservative.
In such cases intransitivity reduces to a broader equation of numbers of people and the weights of their units of measure in assessing candidates.
Such as:
While each voter may not assess the units of measure identically, the trend then becomes a single vector on which the consensus agrees is a preferred balance of candidate criteria.
In mathematics, a binary relation on a set is antisymmetric if there is no pair of distinct elements of each of which is related by to the other. More formally, is antisymmetric precisely if for all or equivalently, The definition of antisymmetry says nothing about whether actually holds or not for any . An antisymmetric relation on a set may be reflexive, irreflexive, or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.
In mathematics, a binary relation associates elements of one set called the domain with elements of another set called the codomain. Precisely, a binary relation over sets and is a set of ordered pairs where is in and is in . It encodes the common concept of relation: an element is related to an element , if and only if the pair belongs to the set of ordered pairs that defines the binary relation.
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable.
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. The name preorder is meant to suggest that preorders are almost partial orders, but not quite, as they are not necessarily antisymmetric.
In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion. A is a subset of B may also be expressed as B includes A or A is included in B. A k-subset is a subset with k elements.
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS). Two objects that are not equal are said to be distinct.
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .
In mathematics, a binary relation on a set is reflexive if it relates every element of to itself.
In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c.
In computer science, the happened-before relation is a relation between the result of two events, such that if one event should happen before another event, the result must reflect that, even if those events are in reality executed out of order. This involves ordering events based on the potential causal relationship of pairs of events in a concurrent system, especially asynchronous distributed systems. It was formulated by Leslie Lamport.
In mathematics, the law of trichotomy states that every real number is either positive, negative, or zero.
In mathematics, an asymmetric relation is a binary relation on a set where for all if is related to then is not related to
Revealed preference theory, pioneered by economist Paul Anthony Samuelson in 1938, is a method of analyzing choices made by individuals, mostly used for comparing the influence of policies on consumer behavior. Revealed preference models assume that the preferences of consumers can be revealed by their purchasing habits.
In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction.
In mathematics, a partial equivalence relation is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation.
An intransitive or non-transitive game is a zero-sum game in which pairwise competitions between the strategies contain a cycle. If strategy A beats strategy B, B beats C, and C beats A, then the binary relation "to beat" is intransitive, since transitivity would require that A beat C. The terms "transitive game" or "intransitive game" are not used in game theory.
In mathematics, Euclidean relations are a class of binary relations that formalize "Axiom 1" in Euclid's Elements: "Magnitudes which are equal to the same are equal to each other."
In economics, a utility representation theorem shows that, under certain conditions, a preference ordering can be represented by a real-valued utility function, such that option A is preferred to option B if and only if the utility of A is larger than that of B. The most famous example of a utility representation theorem is the Von Neumann–Morgenstern utility theorem, which shows that any rational agent has a utility function that measures their preferences over lotteries.