Later-no-help criterion

Last updated

The later-no-help criterion (or LNHe, not to be confused with LNH) is a voting system criterion formulated by Douglas Woodall. The criterion is satisfied if, in any election, a voter giving an additional ranking or positive rating to a less-preferred candidate can not cause a more-preferred candidate to win. Voting systems that fail the later-no-help criterion are vulnerable to the tactical voting strategy called mischief voting, which can deny victory to a sincere Condorcet winner.[ citation needed ]

Contents

Complying methods

Approval, instant-runoff, highest medians, and score all satisfy the later-no-help criterion. Plurality voting satisfies it trivially (as plurality only applies to the top-ranked candidate). Descending Solid Coalitions also satisfies later-no-help.

Noncomplying methods

All Minimax Condorcet methods, Ranked Pairs, Schulze method, Kemeny-Young method, Copeland's method, and Nanson's method do not satisfy later-no-help. The Condorcet criterion is incompatible with later-no-help.[ citation needed ]

Checking Compliance

Checking for failures of the Later-no-help criterion requires ascertaining the probability of a voter's preferred candidate being elected before and after adding a later preference to the ballot, to determine any increase in probability. Later-no-help presumes that later preferences are added to the ballot sequentially, so that candidates already listed are preferred to a candidate added later.

Examples

Anti-plurality

Anti-plurality elects the candidate the fewest voters rank last when submitting a complete ranking of the candidates.

Later-No-Help can be considered not applicable to Anti-Plurality if the method is assumed to not accept truncated preference listings from the voter. On the other hand, Later-No-Help can be applied to Anti-Plurality if the method is assumed to apportion the last place vote among unlisted candidates equally, as shown in the example below.

Truncated Ballot Profile

Assume four voters (marked bold) submit a truncated preference listing A > B = C by apportioning the possible orderings for B and C equally. Each vote is counted A > B > C, and A > C > B:

# of votersPreferences
2A ( > B > C)
2A ( > C > B)
4B > A > C
3C > B > A

Result: A is listed last on 3 ballots; B is listed last on 2 ballots; C is listed last on 6 ballots. B is listed last on the least ballots. B wins. A loses.

Adding Later Preferences

Now assume that the four voters supporting A (marked bold) add later preference C, as follows:

# of votersPreferences
4A > C > B
4B > A > C
3C > B > A

Result: A is listed last on 3 ballots; B is listed last on 4 ballots; C is listed last on 4 ballots. A is listed last on the least ballots. A wins.

Conclusion

The four voters supporting A increase the probability of A winning by adding later preference C to their ballot, changing A from a loser to the winner. Thus, Anti-plurality fails the Later-no-help criterion when truncated ballots are considered to apportion the last place vote amongst unlisted candidates equally.

Coombs' method

Coombs' method repeatedly eliminates the candidate listed last on most ballots, until a winner is reached. If at any time a candidate wins an absolute majority of first place votes among candidates not eliminated, that candidate is elected.

Later-No-Help can be considered not applicable to Coombs if the method is assumed to not accept truncated preference listings from the voter. On the other hand, Later-No-Help can be applied to Coombs if the method is assumed to apportion the last place vote among unlisted candidates equally, as shown in the example below.

Truncated Ballot Profile

Assume four voters (marked bold) submit a truncated preference listing A > B = C by apportioning the possible orderings for B and C equally. Each vote is counted A > B > C, and A > C > B:

# of votersPreferences
2A ( > B > C)
2A ( > C > B)
4B > A > C
4C > B > A
2C > A > B

Result: A is listed last on 4 ballots; B is listed last on 4 ballots; C is listed last on 6 ballots. C is listed last on the most ballots. C is eliminated, and B defeats A pairwise 8 to 6. B wins. A loses.

Adding Later Preferences

Now assume that the four voters supporting A (marked bold) add later preference C, as follows:

# of votersPreferences
4A > C > B
4B > A > C
4C > B > A
2C > A > B

Result: A is listed last on 4 ballots; B is listed last on 6 ballots; C is listed last on 4 ballots. B is listed last on the most ballots. B is eliminated, and A defeats C pairwise 8 to 6. A wins.

Conclusion

The four voters supporting A increase the probability of A winning by adding later preference C to their ballot, changing A from a loser to the winner. Thus, Coombs' method fails the Later-no-help criterion when truncated ballots are considered to apportion the last place vote amongst unlisted candidates equally.

Copeland

This example shows that Copeland's method violates the Later-no-help criterion. Assume four candidates A, B, C and D with 7 voters:

Truncated preferences

Assume that the two voters supporting A (marked bold) do not express later preferences on the ballots:

# of votersPreferences
2A
3B > A
1C > D > A
1D > C

The results would be tabulated as follows:

Pairwise election results
X
ABCD
YA[X] 3
[Y] 3
[X] 2
[Y] 5
[X] 2
[Y] 5
B[X] 3
[Y] 3
[X] 2
[Y] 3
[X] 2
[Y] 3
C[X] 5
[Y] 2
[X] 3
[Y] 2
[X] 1
[Y] 1
D[X] 5
[Y] 2
[X] 3
[Y] 2
[X] 1
[Y] 1
Pairwise election results (won-tied-lost):2-1-02-1-00-1-20-1-2

Result: Both A and B have two pairwise wins and one pairwise tie, so A and B are tied for the Copeland winner. Depending on the tie resolution method used, A can lose.

Express later preferences

Now assume the two voters supporting A (marked bold) express later preferences on their ballot.

# of votersPreferences
2A > C > D
3B > A
1C > D > A
1D > C

The results would be tabulated as follows:

Pairwise election results
X
ABCD
YA[X] 3
[Y] 3
[X] 2
[Y] 5
[X] 2
[Y] 5
B[X] 3
[Y] 3
[X] 4
[Y] 3
[X] 4
[Y] 3
C[X] 5
[Y] 2
[X] 3
[Y] 4
[X] 1
[Y] 3
D[X] 5
[Y] 2
[X] 3
[Y] 4
[X] 3
[Y] 1
Pairwise election results (won-tied-lost):2-1-00-1-22-0-11-0-2

Result: B now has two pairwise defeats. A still has two pairwise wins, one tie, and no defeats. Thus, A is elected Copeland winner.

Conclusion

By expressing later preferences, the two voters supporting A promote their first preference A from a tie to becoming the outright winner (increasing the probability that A wins). Thus, Copeland's method fails the Later-no-help criterion.

Dodgson's method

Dodgson's' method elects a Condorcet winner if there is one, and otherwise elects the candidate who can become the Condorcet winner after the fewest ordinal preference swaps on voters' ballots.

Later-No-Help can be considered not applicable to Dodgson if the method is assumed to not accept truncated preference listings from the voter. On the other hand, Later-No-Help can be applied to Dodgson if the method is assumed to apportion possible rankings among unlisted candidates equally, as shown in the example below.

Truncated Ballot Profile

Assume ten voters (marked bold) submit a truncated preference listing A > B = C by apportioning the possible orderings for B and C equally. Each vote is counted A > B > C, and A > C > B:

# of votersPreferences
5A ( > B > C)
5A ( > C > B)
10B > A > C
2C > B > A
1C > A > B
Pairwise Contests
Against AAgainst BAgainst C
For A1120
For B1215
For C38

Result: B is the Condorcet winner and the Dodgson winner. A loses.

Adding Later Preferences

Now assume that the ten voters supporting A (marked bold) add later preference C, as follows:

# of votersPreferences
10A > C > B
10B > A > C
2C > B > A
1C > A > B
Pairwise Contests
Against AAgainst BAgainst C
For A1120
For B1210
For C313

Result: There is no Condorcet winner. A is the Dodgson winner, because A becomes the Condorcet Winner with only two ordinal preference swaps (changing B > A to A > B). A wins.

Conclusion

The ten voters supporting A increase the probability of A winning by adding later preference C to their ballot, changing A from a loser to the winner. Thus, Dodgson's method fails the Later-no-help criterion when truncated ballots are considered to apportion the possible rankings amongst unlisted candidates equally.

Ranked pairs

For example, in an election conducted using the Condorcet compliant method Ranked pairs the following votes are cast:

28: A42: B>A30: C

A is preferred to C by 70 votes to 30 votes. (Locked)
B is preferred to A by 42 votes to 28 votes. (Locked)
B is preferred to C by 42 votes to 30 votes. (Locked)

B is the Condorcet winner and therefore the Ranked pairs winner.

Suppose the 28 A voters specify second choice C (they are burying B).

The votes are now:

28: A>C42: B>A30: C

A is preferred to C by 70 votes to 30 votes. (Locked)
C is preferred to B by 58 votes to 42 votes. (Locked)
B is preferred to A by 42 votes to 28 votes. (Cycle)

There is no Condorcet winner and A is the Ranked pairs winner.

By giving a second preference to candidate C the 28 A voters have caused their first choice to win. Note that, should the C voters decide to bury A in response, B will beat A by 72, restoring B to victory.

Similar examples can be constructed for any Condorcet-compliant method, as the Condorcet and later-no-help criteria are incompatible.

Commentary

Woodall writes about Later-no-help, "... under STV [single transferable vote] the later preferences on a ballot are not even considered until the fates of all candidates of earlier preference have been decided. Thus a voter can be certain that adding extra preferences to his or her preference listing can neither help nor harm any candidate already listed. Supporters of STV usually regard this as a very important property, although not everyone agrees; the property has been described (by Michael Dummett, in a letter to Robert Newland) as 'quite unreasonable', and (by an anonymous referee) as 'unpalatable.'" [1]

See also

Related Research Articles

<span class="mw-page-title-main">Approval voting</span> Single-winner electoral system

Approval voting is an electoral system in which voters can select any number of candidates instead of selecting only one.

<span class="mw-page-title-main">Condorcet method</span> Pairwise-comparison electoral system

A Condorcet method is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, that is, a candidate preferred by more voters than any others, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner. The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.

<span class="mw-page-title-main">Copeland's method</span> Single-winner ranked vote system

Copeland's method, also called Llull's method or round-robin voting, is a ranked-choice voting system based on scoring pairwise wins and losses.

The Smith set, also known as the top cycle, is a concept from the theory of electoral systems that generalizes the Condorcet winner to cases where no such winner exists, by allowing cycles of candidates to be treated jointly as if they were a single Condorcet winner. Named after John H. Smith, the Smith set is the smallest non-empty set of candidates in a particular election, such that each member defeats every candidate outside the set in a pairwise election. The Smith set provides one standard of optimal choice for an election outcome. Voting systems that always elect a candidate from the Smith set pass the Smith criterion.

The independence of irrelevant alternatives (IIA), also known as binary independence or the independence axiom, is an axiom of decision theory and the social sciences that describes a necessary condition for rational behavior. The axiom says that adding "pointless" (rejected) options should not affect behavior. This is sometimes explained with a short story by philosopher Sidney Morgenbesser:

Morgenbesser, ordering dessert, is told by a waitress that he can choose between blueberry or apple pie. He orders apple. Soon the waitress comes back and explains cherry pie is also an option. Morgenbesser replies "In that case, I'll have blueberry."

The Schulze method is an electoral system developed in 1997 by Markus Schulze that selects a single winner using votes that express preferences. The method can also be used to create a sorted list of winners. The Schulze method is also known as Schwartz Sequential dropping (SSD), cloneproof Schwartz sequential dropping (CSSD), the beatpath method, beatpath winner, path voting, and path winner. The Schulze method is a Condorcet method, which means that if there is a candidate who is preferred by a majority over every other candidate in pairwise comparisons, then this candidate will be the winner when the Schulze method is applied.

An electoral system satisfies the Condorcet winner criterion if it always chooses the Condorcet winner when one exists. The candidate who wins a majority of the vote in every head-to-head election against each of the other candidates – that is, a candidate preferred by more voters than any others – is the Condorcet winner, although Condorcet winners do not exist in all cases. It is sometimes simply referred to as the "Condorcet criterion", though it is very different from the "Condorcet loser criterion". Any voting method conforming to the Condorcet winner criterion is known as a Condorcet method. The Condorcet winner is the person who would win a two-candidate election against each of the other candidates in a plurality vote. For a set of candidates, the Condorcet winner is always the same regardless of the voting system in question, and can be discovered by using pairwise counting on voters' ranked preferences.

The participation criterion, also called vote or population monotonicity, is a voting system criterion that says that a candidate should never lose an election because they have "too much support." It says that adding voters who support A over B should not cause A to lose the election to B.

A voting system is consistent if combining two sets of votes that both elect A over B always results in a combined electorate that ranks A over B. This property is sometimes called join-consistency or separability.

In single-winner voting system theory, the Condorcet loser criterion (CLC) is a measure for differentiating voting systems. It implies the majority loser criterion but does not imply the Condorcet winner criterion.

In voting systems, the Minimax Condorcet method is a single-winner ranked-choice voting method that always elects the majority (Condorcet) winner. Minimax compares all candidates against each other in a round-robin tournament, then ranks candidates by their worst election result. The candidate with the largest (maximum) margin of victory in their worst (minimum) matchup is declared the winner.

Reversal symmetry is a voting system criterion which requires that if candidate A is the unique winner, and each voter's individual preferences are inverted, then A must not be elected. Methods that satisfy reversal symmetry include Borda count, ranked pairs, Kemeny–Young method, and Schulze method. Methods that fail include Bucklin voting, instant-runoff voting and Condorcet methods that fail the Condorcet loser criterion such as Minimax.

The plurality criterion is a voting system criterion devised by Douglas R. Woodall for ranked voting methods with incomplete ballots. It is stated as follows:

The Kemeny–Young method is an electoral system that uses ranked ballots and pairwise comparison counts to identify the most popular choices in an election. It is a Condorcet method because if there is a Condorcet winner, it will always be ranked as the most popular choice.

The later-no-harm criterion is a voting system criterion first formulated by Douglas Woodall. Woodall defined the criterion by saying that "[a]dding a later preference to a ballot should not harm any candidate already listed." For example, a ranked voting method in which a voter adding a 3rd preference could reduce the likelihood of their 1st preference being selected, fails later-no-harm.

In voting systems theory, the independence of clones criterion measures an election method's robustness to strategic nomination. Nicolaus Tideman was the first to formulate this criterion, which states that the winner must not change due to the addition of a non-winning candidate who is similar to a candidate already present. To be more precise, a subset of the candidates, called a set of clones, exists if no voter ranks any candidate outside the set between any candidates that are in the set. If a set of clones contains at least two candidates, the criterion requires that deleting one of the clones must not increase or decrease the winning chance of any candidate not in the set of clones.

The Borda count is a family of positional voting rules which gives each candidate, for each ballot, a number of points corresponding to the number of candidates ranked lower. In the original variant, the lowest-ranked candidate gets 0 points, the next-lowest gets 1 point, etc., and the highest-ranked candidate gets n − 1 points, where n is the number of candidates. Once all votes have been counted, the option or candidate with the most points is the winner. The Borda count is intended to elect broadly acceptable options or candidates, rather than those preferred by a majority, and so is often described as a consensus-based voting system rather than a majoritarian one.

Instant-runoff voting (IRV), also known as plurality with elimination or sequential loser plurality, is a ranked-choice voting system that modifies plurality by introducing last-candidate elimination. In the United Kingdom, it is generally called the alternative vote (AV). In the United States and Australia, IRV is sometimes referred to simply as ranked-choice voting (RCV) or preferential voting respectively, though such terms are considered misnomers because of the wide variety of ranked-choice (preferential) voting systems other than IRV.

<span class="mw-page-title-main">Ranked voting</span> Family of electoral systems

The term ranked voting, also known as preferential voting or ranked-choice voting, pertains to any voting system where voters indicate a rank to order candidates or options—in a sequence from first, second, third, and onwards—on their ballots. Ranked voting systems vary based on the ballot marking process, how preferences are tabulated and counted, the number of seats available for election, and whether voters are allowed to rank candidates equally.

Comparison of electoral systems is the result of comparative politics for electoral systems. Electoral systems are the rules for conducting elections, a main component of which is the algorithm for determining the winner from the ballots cast. This article discusses methods and results of comparing different electoral systems, both those that elect a unique candidate in a 'single-winner' election and those that elect a group of representatives in a multiwinner election.

References

  1. Woodall, Douglas, Properties of Preferential Election Rules, Voting matters - Issue 3, December 1994

Further reading